

Using Federated Properties

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

 1

Using Federated Properties

Overview
In this session, we will discuss how to manipulate data kept in an external system, while still presenting
the information to the user in the standard client user interface. Federation allows you to integrate an
Aras Innovator solution with data that does not reside in the Innovator database.

Objectives

• Review Federated Items and Properties.

• Discuss Federated Data Sources.

• Configure a Federated Property or ItemType.

• Perform CRUD operations with Federated Property values.

ACE 2024

2

Federated Items and Properties
Federated Items and Properties are useful when integrating data from other systems into an Aras
Innovator solution.

When you mark an ItemType as Federated, you are indicating that at least one property of the Item will
not be stored in the Innovator database. Keep in mind that an ItemType that is created in Aras Innovator
is represented by a table in the database and each of its property is represented by a column. Columns
that would have represented Federated properties are dropped from the database.

With Federation, you can seamlessly perform all CRUD operations (Create, Read, Update and Delete)
within the Aras Innovator solution.

Federated Items and Properties

▪ Allow data to be accessed and shared with other systems

▪ Federated Properties display in grids and forms, but the value of the

data may come from another system

▪ Federated Items have at least some of their properties stored in

other database or system

▪ Data is provided to properties using server events

 Using Federated Properties

 3

Federated Options
You may have two scenarios when implementing Federation to an Aras solution. Some elements of the
data reside in the Aras Innovator database, or all elements of the data are kept in an external repository.

In what could be called a “separate system”, for training purposes, no rows (Items) are created in the
Aras Innovator database and all data must be brought into the system using custom logic. All system
properties still exist but are not used.

On the other hand, in a so-called “mixed system”, some elements of the dataset, such as the item
identification number, system properties such as “created_on”, “created_by” may be stored in the Aras
Innovator database, while some other elements may reside in an external repository.

Federated Options

▪ Mixed System

▪ Some of the data is stored in a remote system

▪ ItemType is Federated

▪ Certain properties are marked as Federated

▪ Federated properties do not have a column in the ItemType database table

▪ Separate System

▪ All data is stored in a remote system

▪ ItemType is Federated

▪ All properties of the ItemType are Federated

▪ No data rows are created in the ItemType database table

ACE 2024

4

Reviewing Possible Data Sources
Several different types of implementations may be effective to establish the connection between the
external system and Aras Innovator server. If a generalization could be done, it would be safe to say that
in all cases, we would need to establish some sort of “connector”, which will contain the basic elements
for the external system to authenticate and establish a session, with the associated configured
permissions allocated to the connecting identity. This connector would also contain the URL of the
server supporting such handshake, as well as the database to be used in the configured integration.

For our hands-on exercise in this session, we will use an external repository to retrieve and update data
using flat files. Server events will be used to trigger the execution of server methods to properly
manipulate the desired dataset, according to the implemented business requirements.

Reviewing Possible Data Sources

▪ Web Services

▪ Web Service Configuration

▪ SQL

▪ External Relational Database

▪ IOM

▪ Using API calls to remote system

 Using Federated Properties

 5

Federated Property Value – Mixed
To support Federation, we will manipulate the CRUD operations associated to the Item dataset using a
set of server events on the ItemType. These events allow you to intercept the AML messages being
passed to and from the Innovator Server whenever creating, retrieving, updating, or deleting external
data.

Reviewing Server Events

Working with a Federated Property Value - Mixed

▪ ItemType server events are available to populate data:

▪ onAfterGet – used to populate Federated property

▪ onAfterDelete – removes remote data when Item is deleted

▪ onBeforeAdd – adds remote data to a remote system when Item is added

▪ onBeforeUpdate – changes remote data on an Item edit

ACE 2024

6

Federated Property Value – Separate
If the entire Item dataset is not stored in the Aras Innovator database, you will then replace the current
server logic for CRUD operations with your own customized code. These server events will completely
replace the Add, Edit, Get and Delete standard behavior in the Aras Innovator system.

Linking Server Events to an ItemType

Working with a Federated Property - Separate

▪ All Item logic is replaced with developer code to obtain and return

data to the remote system using:

▪ onGet – replaces the standard retrieve logic

▪ onAdd – replaces the standard add logic when a new Item is added

▪ onDelete – replaces the standard delete logic

▪ onUpdate – replaces standard edit logic

 Using Federated Properties

 7

Federated Example (Federated Customer ItemType)
The Aras Innovator solution implemented for this session contains an ItemType called “Federated
Customer” configured in a way that the values for both “contact name” and “phone number”
properties will be stored in an external repository, representing the integration with another system. For
this exercise, we will consider that the external system periodically updates this data with Aras
Innovator.

The “Federated Customer” ItemType is implemented as a "mixed" Federated Item with its associated
dataset stored in a flat csv-file named “pc_CRM_customers_repository.csv”. The “customerid“ property
will be used to synchronize the external repository dataset with the data in the Aras Innovator solution.
The fields “customername” and “customerphone” will store the federated property values of the
“Federated Customer” ItemType in our example.

The mapping between the property name of the “Federated Customer” ItemType in Aras Innovator and
its representation in the external repository is shown below:

innovator.Customer

Federated Example

▪ Customer table and Federation_Contact.csv

customerid F9074B4B519544…

customercontact John Jones

customerphone 212-555-1212

Federation_Contacts.csv

id F9074B4B519544…

name IBM

main_fax 212-555-1111

… …

Aras

Innovator DB

Federation_

contacts.csv

Aras Innovator

Server

Federated Customer property name column name in csv-file

id customerid

contact_name customername

main_phone customerphone

ACE 2024

8

Configuring a Federated ItemType
A Federated Item is represented in the Innovator Solutions configuration by selecting the “Federated
Item” radio button in the Implementation Type group, as shown above.

Selecting this option affects system relationships behavior and indicates that some or all the data for the
items will be stored in an external repository. Methods associated to server events of the ItemType will
help us handling the implementation of Federation on this ItemType.

Try it:

1. Open the “Federated Customer” ItemType and verify the Implementation Type

Configuring a Federated ItemType

 Using Federated Properties

 9

Configuring a Federated Property
Enable Federation at the property level using the "Federated" checkbox for each property containing a
value that is kept away from the Innovator database.

In this example, the “contact_name” and “main_phone” properties would no longer be stored in the
Aras Innovator database.

Warning about setting a property/item as Federated

• Choosing this option will drop the database columns for these marked properties from the
“Federated Customer” ItemType table in the Aras Innovator database as soon as you save the
changes.

• Note the dropped columns on your local SQL Server.

Try it:
1. Note that the ItemType is configured with both Federated and Non-Federated Properties

Configuring a Federated Property

▪ Enable Federated Property

ACE 2024

10

Integrating Variables in Code
Variable Items can be used to store values, which may then be accessed by custom programming code.
In this example, a Variable Item is used to specify the absolute path to the location of the external
repository (the file “pc_CRM_customers_repository.csv”). Later, all methods trying to perform CRUD
operations on federated property values will obtain the path to the external repository from the value
of a Variable Item named "pc_CRM_customers_repo_location". The advantage of using this
implementation is that the path to the file can be managed by one Variable Item and does not need to
be defined in multiple methods individually, in the event of a change in the repository location.

Note on user’s permissions

Proper access rights will be needed so that the external
repository may be accessed by the server process. The
repository location must allow IIS_IUSRS users both read
and write access.

Integrating variables in code

▪ Storing the path to the csv-file (same Server as Aras installation)

in Value field of Variable Item

Federation_

contacts.csv

 Using Federated Properties

 11

Accessing Federated Property Values
Server Event methods must be used when performing CRUD operations on federated property value.
They must be configured at the ItemType to establish a connection to the remote system – for this
training example, the remote repository is represented by the comma-separated-value file.

Try it:
1. Verify the Server Events set for the Federated Customer ItemType

▪ The retrieval and modification of federated property values is

accomplished through Server Event Methods

Accessing Federated Property values

Display in Grid/ on Item

Creation of Item

Deletion of Item

Update of Item

ACE 2024

12

Retrieving a Federated Property/Item
To retrieve a federated property/Item, the “onAfterGet” server event must be used.

Note that retrieving data may return a result set with more than one database row, also known as a
collection, so your method code should be able to handle this scenario.

In this example, the Federated Customer Item is being populated with external data from the csv file
repository. The “setProperty” method is used to assign the appropriate values to the related properties
based on data retrieved from the external data source.

C# Server Side Method Solution for Property Retrieval

// PCOSTA ACE2024 - Federation Session - Federated CRM Customer Retrieval implementation

// Processes CSV repository containing federated items (CRM Customers in this example)

// Add this method as an onAfterGet Server Event in the Federated Customer ItemType

// Gets complete path and file name of CSV file from Variable named

"pc_CRM_customers_repo_location"

Item variablePath = this.newItem("Variable", "get");

variablePath.setProperty("name", "pc_CRM_customers_repo_location");

Item pathItem = variablePath.apply();

string path = pathItem.getProperty("value", "");

if (path == "") {

 return this.getInnovator().newError("Path and file name of CSV file needs to be defined on

Variable named 'pc_CRM_customers_repo_location'");

}

// Reads all lines of CSV file containing CRM Customers and store them in dynamic array

// Tuple structure: customerid (GUID), customer contact name and customer main phone

var rows = new Dictionary < string,

 Tuple < string, string >> ();

using(var reader = new StreamReader(path)) //Streamreader to read file

 {

 while (!reader.EndOfStream) {

 var line = reader.ReadLine();

 var values = line.Split(',');

 rows.Add(values[0], new Tuple < string, string > (values[1],

 values[2]));

 }

 Using Federated Properties

 13

 reader.Close();

 reader.Dispose();

 }

// Loops through collection and gets federated property values for each Item from the array

int count = this.getItemCount();

for (int i = 0; i < count; i++) {

 Item idx_itm = this.getItemByIndex(i);

 string id = idx_itm.getID();

 if (rows.ContainsKey(id)) {

 var props = rows[id];

 idx_itm.setProperty("contact_name", props.Item1);

 idx_itm.setProperty("main_phone", props.Item2);

 }

}

return this;

Try it:

1. Open the method associated with “OnAfterGet” Server event

ACE 2024

14

Adding New Item to a Federated Dataset
To add a new data row to the external csv-file repository, you can use either the “onBeforeAdd” or
“onAfterAdd” server events.

In this example, a new row will be created in the csv-file (pc_CRM_customer_repository.csv).

C# Server Side Method Solution for Item Addition to the Dataset

// PCOSTA ACE2024 - Federation Session - Federated CRM Customer Addition implementation

// Adds new row to external CSV repository containing federated items for CRM Customers

// Add this method as an onBeforeAdd Server Event in the Federated Customer ItemType

// Gets complete path and file name of CSV file from Variable named

"pc_CRM_customers_repo_location"

Item variablePath = this.newItem("Variable", "get");

variablePath.setProperty("name", "pc_CRM_customers_repo_location");

Item pathItem = variablePath.apply();

string path = pathItem.getProperty("value", "");

if (path == "") {

 return this.getInnovator().newError("Path to csv file needs to be defined on Variable named

'pc_CRM_customers_repo_location'");

}

// Reads out id and federated property values of new Item and appends to new row in csv file

using a Streamwriter

using(StreamWriter streamw = File.AppendText(path)) {

streamw.WriteLine($"{this.getID()},{this.getProperty("contact_name","")},{this.getProperty("m

ain_phone","")}");

 streamw.Close();

 streamw.Dispose();

}

return this;

 Using Federated Properties

 15

Try it:

1. Open the method associated with “OnBeforeAdd” Server event

Updating Changes to the Remote System
To update an existing row in the external csv-file repository, either the “onBeforeUpdate” or
“onAfterUpdate” server events can be used to trigger the update method below, when an existing Item
is saved.

C# Server Side Method Solution for Federated Property Update

// PCOSTA ACE2024 - Federation Session - Federated CRM Customer Editing implementation

// Edits an existing row in the external CSV repository containing federated items for CRM

Customers

// Add this method as an onBeforeUpdate Server Event in the Federated Customer ItemType

// Gets complete path and file name of CSV file from Variable named

"pc_CRM_customers_repo_location"

Item variablePath = this.newItem("Variable","get");

variablePath.setProperty("name","pc_CRM_customers_repo_location");

Item pathItem = variablePath.apply();

ACE 2024

16

string path = pathItem.getProperty("value","");

if (path=="")

{

 return this.getInnovator().newError("Name and Path to CSV file needs to be defined on

Variable named 'pc_CRM_customers_repo_location'");

}

// Edits federated property values on Item and appends row if Item does not exist in external

file, otherwise values are replaced

string id = this.getID();

List<string> lines = new List<string>();

bool added = false;

using (var reader = new StreamReader(path))

{

 while (!reader.EndOfStream)

 {

 var line = reader.ReadLine();

 var values = line.Split(',');

 if (values[0].Contains(id))

 {

 values[1]=this.getProperty("contact_name","");

 values[2]=this.getProperty("main_phone","");

 line = string.Join(",",values);

 added = true;

 }

 lines.Add(line);

 }

}

if (!added) // Adds a row if Item does not exist in the external CSV file

{

lines.Add($"{id},{this.getProperty("contact_name","")},{this.getProperty("main_phone","")}");

}

File.WriteAllLines(path, lines);

return this;

 Using Federated Properties

 17

Try it:

1. Open the method associated with “OnBeforeUpdate” Server event

ACE 2024

18

Removing Data from a Federated Dataset
Either the “onBeforeDelete” or “onAfterDelete” server events can be used to allow deletion of data
from an external repository.

C# Server Side Method Solution for Federated Item Deletion

// PCOSTA ACE2024 - Federation Session - Federated CRM Customer Deletion implementation

// Deletes an existing row in the external CSV repository containing federated items for CRM

Customers

// Add this method as an onBeforeDelete Server Event in the Federated Customer ItemType

// Gets complete path and file name of CSV file from Variable named

"pc_CRM_customers_repo_location"

Item variablePath = this.newItem("Variable","get");

variablePath.setProperty("name","pc_CRM_customers_repo_location");

Item pathItem = variablePath.apply();

string path = pathItem.getProperty("value","");

if (path=="")

{

 return this.getInnovator().newError("Name and Path to CSV file needs to be defined on Variable

named 'pc_CRM_customers_repo_location'");

}

// Get ID of Item to be deleted and matches to the 'customerid' property in the external CSV file

string id = this.getID();

List<string> lines = new List<string>();

using (var reader = new StreamReader(path))

{

 while (!reader.EndOfStream)

 {

 var line = reader.ReadLine();

 var values = line.Split(',');

 if (!(values[0].Contains(id)))

 {

 lines.Add(line);

 }

 }

}

File.WriteAllLines(path, lines);

return this;

 Using Federated Properties

 19

Try it:

1. Open the method associated with “OnBeforeDelete” Server event

ACE 2024

20

Summary
The following topics and activities were covered in this session:

• Review of Federated Items and Properties.

• Discussion of Federated Data Sources.

• Configuration of Federated Property or ItemType.

• Execution of CRUD operations with Federated Property values.

