

Implementing RESTful Services

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

1

Implementing RESTful Services

Overview
In this session, we will discuss how to manipulate items using the Aras Innovator RESTful API that allows
you to retrieve, add, update, and delete items, as well as execute server methods, stored in the Aras
Innovator database. The API uses the Open Data Protocol (OData) which is an International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC) approved Open Access Same-
Time Information Standard (OASIS). Data elements that are exchanged with the server are defined using
the JavaScript Object Notation (JSON) format. This allows any clients that support this protocol to
communicate easily with the Aras Innovator server.

Objectives

• Discuss the RESTful architecture.

• Review the Open Data Protocol (OData).

• Retrieve Items and Properties.

• Use Request options to filter data.

• Add new Items.

• Edit existing Items.

• Delete Items.

• Execute server methods.

ACE2024

2

Defining RESTful Architecture
REST stands for “Representational State Transfer” and it is a common architecture style for designing
loosely coupled applications that interact using HTTP. REST does not enforce any rules regarding how it
should be implemented at a lower level; it just defines high-level design guidelines, which are
implemented by web services developers.

The Aras RESTful API has been created with these goals in mind and follows six architectural constraints,
as outlined in the following recommended reading for this topic, included in detail in Roy T. Fielding’s
year 2000 dissertation presented to the University of California, Irvine and found online at the following
URL: https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf.

Defining RESTful Architecture

▪ Web service style (Representational State Transfer)

▪ Provides interoperability between computers using the internet

▪ Communicate using HTTP Methods/ URL's

▪ Guiding constraints:

▪ Uniform interface

▪ Client-server architecture

▪ Stateless

▪ Cacheable

▪ Support Layered Systems

▪ Code on Demand (Optional)

https://ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Implementing RESTful Services

3

Architectural Constraints
The architectural constraints suggested in the technical literature above are briefly described below with
a very simple approach.

Uniform Interface
All resources should be accessible via a URI using a common approach (such as HTTP GET, POST, PATCH,
DELETE) and follow a standardized set of syntax rules.

Client-Server architecture
The development of the client and the server must be able to evolve independently.

Stateless
Each client-to-server request must contain all the information necessary to understand the request and
cannot take advantage of any stored context on the server. The session state is therefore kept entirely
on the client.

Cacheable
If a response is cacheable, then a client cache is given the right to reuse that response dataset for later
equivalent requests.

Layered Systems
The architecture must support systems built in hierarchical layers so that different servers can work
together to service a request.

Code on Demand (optional)
Allows the client to download and execute code in the form of applets or scripts.

ACE2024

4

Understanding OData
The Open Data Protocol (OData) is a data access protocol for the web. OData provides a uniform
mechanism to query and manipulate datasets through CRUD operations (create, read, update, and
delete).

OData is built on the AtomPub protocol for retrieving and sending data and follows OASIS
recommendations. It uses standardized technologies such as HTTP, XML, and JSON to send and receive
data in a uniform manner, as well as define the data model being used.

The Aras implementation of RESTful Services uses OData to receive an OData Request at the server and
subsequently translate that request into a corresponding AML request. The resulting dataset provided
by the server execution of the received request is then translated back as an OData response and sent to
the requesting client.

Understanding the Aras AML command language is extremely helpful when constructing and debugging
OData requests to be consumed by the server.

Simply put, Aras Innovator RESTful API uses OData protocol to handle its RESTful API. On the other hand,
JSON allows a more compact data format, hence enabling faster processing and communication with
other systems that also support the OData protocol.

Understanding Odata

▪ Data access protocol using REST architecture

▪ Built on the AtomPub protocol for retrieving and updating resources

(OASIS standard)

▪ Aras Innovator Odata Interface:

Odata Request AML Request Translation

AML Response TranslationOdata Response

Aras Innovator Server

Processing of

the AML action

Implementing RESTful Services

5

Reviewing OData URL
The simple OData URL structure allows one to easily identify the elements involved in the client-server

communication using HTTP messages. Those messages may include the following components:

• Service Root URL
Contains the base URL for the requested service. It normally presents the name of the server
and associated port in use, if needed.

• Resource Path
Exposes the object accessible to HTTP elements, using its standard methods, such as GET, POST,
PUT, PATCH and DELETE. For Aras, this element typically represents an ItemType, or server
method involved with the request.

• Query Options (optional)
Following the query string indicator (?), these parameters are passed to the service and support
attributes to the queries to be applied on the requested resource. Multiple query strings can be
included, and they are delimited by the ampersand character (&). The Aras API options include
filtering, paging, and selecting data.

Reviewing Odata URL

▪ Odata Request URL Format

Service Root URL Resource Query Options

Path

Service Root URL

▪ …/server/oData

▪ Resource Path

▪ ItemType or Method

▪ Query Options

▪ Item Request Options

https://training.aras-cloud.com/sit-1-0-202111233/server/odata/Part?$top=2&$orderby=Name

ACE2024

6

Implementing HTTP Methods as Aras Actions
Every OData request relates to an HTTP method which is then used by the Aras API to determine its
purpose and build the appropriate AML command to be presented to the server.

Implementing HTTP Methods as Aras Actions

HTTP Method Aras AML Action Notes

GET get

POST add default for POST

POST create @aras.action: create

PUT edit update single property on an Item

PATCH edit default for PATCH

PATCH Update @aras.action: update

PATCH Lock @aras.action: lock

PATCH Unlock @aras.action: unlock

PATCH Merge @aras.action: merge

DELETE Delete default for DELETE

DELETE Purge @aras.action: purge

Implementing RESTful Services

7

Insomnia API Testing Tool
Several 3rd party tools are available to help you create and test HTTP requests and review the responses.

In this session, we will be using Insomnia, which is downloadable from https://insomnia.rest/download.

As an API testing tool, Insomnia will:

• Provide an HTTP Client to be used as a testbed for Web Services.

• Execute Aras RESTful API requests.

• Use local, cloud or Git based storage.

• Offer advanced scripting capabilities.

• Handle environmental variables.

• Incorporate secure authentication.

https://insomnia.rest/download

ACE2024

8

Authorizing Requests Using OAuth Token
Our test implementation will explore the Insomnia capability of sharing an authentication token with all
requests within a collection. To get the authentication token, proper system configuration parameters
are entered onto the authorization form available in Insomnia. For further details on how to fill out the
authorization form, see instructions on this configuration on the Aras Innovator RESTful API
documentation that goes with each Aras Innovator release documentation. Specific reference to
configure Postman properly is found on Chapter 7 – Using OAuth 2.0 Tokens from the Authentication
Server, where the setup parameters are discussed in detail.

The Aras Innovator API requires each request to be authorized to access the server using a set of
credentials. An access token may be first obtained by providing a set of parameters to the Aras
OAuthServer.

Implementing RESTful Services

9

The generated token is then used repeatedly to authorize any subsequent requests made to the Aras
Innovator server until the preset token expiration period is reached. By default, the authorization token
is set to expire 3600 seconds (one hour) after its issuance time, however this parameter may be
configured at …server_install\OAuthServer\OAuth.config file, as shown below.

A request is then presented to the server for the OAuth token, as shown below.

A sample of the returned token, obtained in Insomnia, is shown below.

ACE2024

10

Hands-on Practice
At this point of our discussion, we have established the technical foundation on which the handshake of
a client requester system and the server response provider system communicate. The following
examples will allow us to exercise and solidify this understanding using some hands-on exercises to
experience the exchange of different types of queries.

Our sample queries were grouped into similar requests within each HTML method group, with some sort
of progressive level of complexity, allowing us to provide examples of the manipulation of ItemTypes
(datasets) on its entireness, or a more detailed approach at lower levels to manipulate single and
specific items, or collection of items, within the corresponding dataset, with the application of
arguments.

The additional arguments in the request string correspond to AML elements used to:

• Filter on Item properties.

• Select Item properties to be returned.

• Apply conditional selection of returned items based on property values and ranges.

• Include relationship properties to the result set.

• Include related items to the result set.

• Manipulate extended properties.

• Determine items to be affected by an update request.

• Invoke the execution of a server-side method.

Implementing RESTful Services

11

Get All Parts
The HTTP GET method is used to retrieve items from the database. The resource section of the OData
URL specifies the ItemType (database table) the server operation will use to fulfill the request.

Try it:

To retrieve all parts

1. To retrieve all items of a specific ItemType use the HTTP GET method and provide the ItemType
name in the resource section of the OData URL.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

12

Get All Parts count
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve the total count of items in a table

1. To retrieve the total count of items of a specific ItemType, use the HTTP GET method, provide
the ItemType name in the resource section of the OData URL, and append the option “$count”
at the end of the request.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

13

Get All Parts Top 10
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve the top 10 items of ItemType Part

1. To retrieve the top 10 items of ItemType Part, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append the option “?$top=10” at the end of
the request.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

14

Get All Parts OrderBy
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve items ordered by a specific property

1. To retrieve items ordered by a specific property, use the HTTP GET method, provide the
ItemType name in the resource section of the OData URL, and append the option
“?$orderby=item_number” at the end of the request.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

15

Get Single Part by Id
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve a single item by its Id

1. To retrieve a single item by its identification, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append the item “id” as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

16

Get Single Property of a Single Part
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve a single property of a single item

1. To retrieve a single property of a single item, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append both the item id and the option
that indicates the name of the desired property to be retrieved as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

17

Get Single Property of All Items and Total Count
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve a single property of all items and the total count

1. To retrieve a single property of a single item, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, append the options for both total count and
select the desired properties to be returned as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

18

Get Selected Properties of All Items
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve selected properties of all items

1. To retrieve selected properties of all items, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append the option to select the desired
properties to be returned as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

19

Get All Items with Matching Selected Properties
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve all items with matching selected properties

1. To retrieve selected properties of all items, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append both the option to filter on select
the desired properties and conditions to be returned as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

20

Get Item and Expand on Relationships
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve an item and expand its relationships

1. To retrieve selected properties of all items, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append both options to filter on the
selected item and expand the desired relationship ItemType as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

NOTE:

See screenshot of partial result set on next page.

Implementing RESTful Services

21

ACE2024

22

Get Item and Expand on Relationships and Related Items
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve an item and expand its relationships and related items

1. To retrieve selected properties of all items, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, append both query parameters to filter on the
selected item and expand the desired relationship ItemType and related items as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

NOTE:

See screenshot of partial result set on next page.

Implementing RESTful Services

23

ACE2024

24

Get All Extended Properties of an Items
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve all extended properties of an item

1. To retrieve selected properties of all items, use the HTTP GET method, provide the ItemType
name in the resource section of the OData URL, and append all query parameters to filter on the
selected item and desired multiple “xp-“ properties as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

25

Get All Properties of a File Item
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve all properties of a File Item

1. To retrieve all properties of a File item, use the HTTP GET method and provide the unique Id of
the desired file item to explore as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

26

Get the physical File item
The HTTP GET method is used to retrieve items from the database. The addition of optional parameters
will change the logic of the request, and consequently alter the presented result set.

Try it:

To retrieve the physical File item

1. To retrieve the physical file item itself use the HTTP GET method and in addition provide the
unique Id of the desired file item to explore, as well as the option “$value” as shown above.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

NOTE:

See screenshot of partial result set on next page.

Implementing RESTful Services

27

ACE2024

28

Add New Item
The HTTP POST method is used to add items to the database. The addition of optional parameters and
supplemental elements will change the logic of the request, and consequently alter the behavior to be
adopted by the server.

Try it:
To add a new item

1. To add a new item to the database, use the HTTP POST method, provide the ItemType, and
include elements to associate values to the item properties, as seen on the Body tab of the
client interface.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

29

Additional verification may be performed directly on the Innovator client with a new search on Parts.

ACE2024

30

Add New Item with Reference to Another Item
The HTTP POST method is used to add items to the database. The addition of optional parameters and
supplemental elements will change the logic of the request, and consequently alter the behavior to be
adopted by the server.

Try it:
To add a new item with reference to another item

1. To add a new item to the database and establish a reference to an existing item in the system,
use the HTTP POST method, provide the ItemType, and include elements to bind properties to
already existing items in Innovator, as seen on the Body tab of the client interface.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen. Additional verification may be directly
performed using the Aras Innovator web browser-based client component.

Implementing RESTful Services

31

Note the newly created item on the corresponding Aras Innovator Client Item View form and verify the
allocation of the Assigned Creator to the Component Engineering identity.

ACE2024

32

Add New Item Related to Another New Item
The HTTP POST method is used to add items to the database. The addition of optional parameters and
supplemental elements will change the logic of the request, and consequently alter the behavior to be
adopted by the server.

Note the JSON constructor built in the Body tab to indicate both the source and related items in this
new relationship.

Try it:
To add a new item related to another new item

1. To add two new items to the database and establish a relationship between the two, use the
HTTP POST method, provide the ItemType, and include elements to bind them in a new
relationship, as seen above on the Body tab of the requester client interface.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen. Additional verification may be directly
performed using the Aras Innovator web browser-based client component.

NOTE: See screenshot of partial result set on next page.

Implementing RESTful Services

33

ACE2024

34

Edit an Item Property
The HTTP PATCH method is used to edit items in the database. The addition of optional parameters and
supplemental elements will change the logic of the request, and consequently alter the behavior to be
adopted by the server.

Note the constructor built in the Body tab to indicate both the item property and associated value to be
edited on the selected item.

Try it:

To edit an item property

1. To edit an item property, use the HTTP PATCH method, provide the ItemType, and define the
unique item to be edited. Include elements to the Body tab to indicate both the property name
and associated value to be edited on the selected item, as seen on the Body tab of the client
interface.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen. Additional verification may be directly
performed using the Aras Innovator web browser-based client component.

Implementing RESTful Services

35

Running an Aras Innovator server-side method
The HTTP POST method is used to instruct the server to execute server-side methods already present in
the Aras Innovator database. Note the use of dot (.) notation to link the requested resource to the
desired server-side method name, as saved in the Aras Innovator database. The addition of optional
parameters and supplemental elements will change the logic of the request, and consequently alter the
behavior to be adopted by the server.

Try it:

To run an Aras Innovator server-side method

1. To run an Aras Innovator server-side method, use the HTTP POST method, provide the resource
to be utilized on the request, and include the name of the selected server-side method to be
executed, using the dot (.) notation to link the elements of your request.

2. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

ACE2024

36

Running an Aras Innovator server-side method on an Item
The HTTP POST method is used to instruct the server to execute server-side methods already present in
the Aras Innovator database. Note the use of dot (.) notation to link the requested resource to the
desired server-side method name, as saved in the Aras Innovator database. The addition of optional
parameters and supplemental elements will change the logic of the request, and consequently alter the
behavior to be adopted by the server.

Try it:

To run an Aras Innovator server-side method

1. To run an Aras Innovator server-side method, use the HTTP POST method and in addition to
providing the resource to be utilized on the request, include the name of the selected server-
side method to be executed, using the dot (.) notation to link the elements of your request.

2. Add the reference of the item to be processed by the selected server-side method to be
executed by the Aras Innovator server with the construct included in the Body tab, as seen
above.

3. Click the Send button to process the request. The response (items or errors) will appear in the
server response panel of the application screen.

Implementing RESTful Services

37

Summary
In this session, we discussed several aspects of the Aras RESTful Services API utilization. As a

 result, you should be able to:

• Understand the RESTful architecture using OData.

• Use HTTP methods in OData formatted instructions to:

1. Retrieve Items and properties values.

2. Add new Items.

3. Edit existing Items.

4. Execute Aras Innovator server-side methods.

