

Defining User Access with MAC Policies

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).
Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.
Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.
Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.
All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.
Notice of Liability
The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

 1

Overview

Aras Innovator gives administrators many options for access control. Mandatory Access Control (MAC)
is designed to control access to Items by comparing characteristics of the Item being requested against
those of the user requesting access.
For example, a MAC Policy can evaluate a User’s properties (Clearance Level, Citizenship, Company,
etc..) against a Part Item’s properties (Classified/Non-classified, Confidentiality, Supplier, etc.).
In addition to properties directly on Itemtypes and users, attributes can be derived from related and/or
referencing items and results used to determine access control policy.
For example, we may derive a list of security levels from all referencing Projects for a given Part. If that
Part item is referenced by even one restricted project, access can be restricted to authorized users if
needed.
Custom logic can also be used to determine environmental conditions, like time of day or other
customer specific requirements. All these features empower administrators to implement a flexible and
robust security scheme with MAC.

Course Goals

• Review Aras Access Control with emphasis on the way MAC fits into the overall scheme.
• Explore Mandatory Access Control as implemented using property expressions.

• Introduce the latest MAC feature “Multi-valued Derived Attributes”.
• Finally, we will implement example MAC policies on the machines provided.

Definining User Access With MAC Policies

 2

Objectives
We will explore Mandatory Access Control in three parts:

- Review of Innovator Access Control concepts
o Permissions
o Role-based Teams
o Domain Access Control (DAC)

- Introduction to Mandatory Access Control (MAC)
o How MAC works, and how it fits into the Access Control stack
o Attribute-driven Boolean expressions

- Enhanced Access Control capabilities with Multivalued Derived Attributes
o Query-driven collection operations

© 2023 Aras2

Contents

Part One:
Brief Review - Innovator Access Control Concepts

Part Two:
Mandatory Access Control (MAC)

Part Three:
Latest MAC Functionality - Multivalued Derived Attributes

Also:
Resources / More Information

Definining User Access With MAC Policies

 3

Review: Access Rights
A matrix of access rights is common to all forms of access control in Aras Innovator. Access rights
include Get, Update, Delete, Discover, Show Permissions Warning and Can Change Access. These rights
are enabled or disabled for Identities as defined in a matrix.

The most basic form is the Permission item shown above. All schemes use access rights as the
mechanism for security policies – Permissions, Teams, Domain Access Control (DAC), and Mandatory
Access Control (MAC).

© 2023 Aras4

Access Rights
Get, Update, Delete, Discover,
Show Warnings, Change
Access

Access Rights are Integral to
all Access Control Schemes
Permissions
 Teams
Domain Access Control (DAC)
Mandatory Access Control
(MAC)

Definining User Access With MAC Policies

 4

Permissions are initially set by the Itemtype definition, then commonly overridden by LifeCycle State
changes. They can be defined with abstract Roles, which are resolved when the context item is
associated with a Team item.

Try It … View a Permission Item:

1. Open the Navigation Panel to view the TOC.
2. Navigate to Design->Parts and open any preliminary Part item for viewing
3. From the […] More menu, select Permission->View

4. Note that access to the opened Part item is controlled by this matrix
5. Open any Part in State ‘Released’, and view the Permission
6. Note the differences in the Access matrix
7. Close all Parts

Definining User Access With MAC Policies

 5

Role-based Teams enable many assignment patterns on a single permission
matrix
Teams contain mappings from Roles to Identities. They work in tandem with Permissions defined with
Roles instead of discreet Identities in the vertical axis.

All Itemtypes include an Item Property ‘Team’. If a Team Item is assigned to this Property,
corresponding Roles are replaced with the specific Identity defined in the Team item.

Workflow Assignments are also resolved when a Team is assigned to the Controlled Item.

Try It … View a Team Item:

1. Navigate to Administration->Teams in the TOC
2. Search/Open ‘Product Team’ and observe the mappings
3. Any Permissions with these Roles would replace them with the specified Identities:

Definining User Access With MAC Policies

 6

Access Control by Occurrence in a Relationship Structure
Domain Access Control (DAC) uses a standard Aras Query Definition item to determine the level of
access to grant to an item. In the example above, Document Items can be (a) directly related to a
Project or (b) related to a Part that is related to the Project. Because the structures are different, DAC
can grant different permissions to Documents in one structure as opposed to the other.

Additional criteria like Lifecycle States and existing Permissions enable further refinement of Access
granted to the user.

For more information:
Refer to the Domain Access Control Guide found in the Documentation Folder of the CD Image.

Definining User Access With MAC Policies

 7

Mandatory Access Control
Unlike other Innovator Access Control models, MAC can revoke existing Access Rights instead of
granting new Permissions. Therefore, it acts as a conditional override of any existing Access Rights for a
given Item.

The decision on whether to revoke access or allow it is made by evaluating characteristics of the current
User against the characteristics of the Item being accessed. MAC uses Boolean expressions to perform
this test. If the Boolean expression solves to TRUE, then access is left as is. Otherwise, the Access Rights
(Get, Update, Delete, etc.) are disallowed for the User requesting it.

Advanced Mandatory Access Control with Multi-valued Derived Attributes

To support advanced use cases MAC supports Derived Attributes, which are query-driven collections
that can be used as operands in MAC Boolean expressions. This allows Access Control to be defined
using set operations like intersection, containment, exclusion, etc. against Query results.

Definining User Access With MAC Policies

 8

How Access Control is Layered
As previously mentioned, Permissions, Teams, and DAC grant Permissions to Items. Permissions are set
by default on new Items using the default Permission template configured on the Itemtype. Permissions
are often changed by Lifecycles. Role Identities can be overloaded dynamically by Team assignment.
Domain Access can change Permissions on an item based on the structure where it occurs (and other
criteria). All of these redefine or reassign Permissions.

MAC does not grant any Permissions – instead it enforces Boolean expressions against specific Access
Rights (Get, Update, Delete, etc.). In this manner, MAC conditionally revokes existing rights.

All four of these Access Control mechanisms may be implemented for any given Itemtype. MAC is
enforced last and has the final say on Access Rights.

Definining User Access With MAC Policies

 9

We will focus solely on MAC and Multi-valued Derived Attributes from this point
forward.

Definining User Access With MAC Policies

 10

Applying Conditions to Access Rights
Let’s dig a little deeper into the simple example use case where only authorized users should be allowed
to view (Get) classified Document items. MAC uses Boolean expressions in a structure that collectively
solves to a single TRUE or FALSE condition – often made up of several nested expressions with logical
AND/OR/NOT operators. The overall Condition is then applied to one or more Access Rights to define a
MAC Rule.

- Any Property of CurrentItem or CurrentUser can be made available for use in expressions.
- Useful Helper Functions simplify expressions for example IsMemberOf() allows User qualification

by adding or removing users from Identity groups.

Rule

Expressions Datatype Logical

1 CurrentItem.Classified = ‘True’ List Property [True, False] AND

2 CurrentUser.IsMemberOf(‘authorized_group’) Group Identity -

We could alternatively add properties to the User itemtype directly, but group membership avoids
editing of the User Itemtype and is more maintainable. Below is an expression using a Property
maintained directly on the User Itemtype, which would require editing and updating the item:

- CurrentUser.[ITAR Level] = ”3” List Property on User Item -

Definining User Access With MAC Policies

 11

Examining a MAC Policy Rule
In the MAC data model, a Rule associates Boolean Conditions with one or more Access Rights. The
Condition must solve TRUE or the Access Right is revoked for the controlled Item. MAC Rules may
control any Access Right except for ‘Can Change Access’ (changing the underlying Permission is not
applicable).

Try It … View an existing MAC Rule:

1. In the TOC, navigate to Administration->Access Control->MAC Policies
2. Search for and view the ‘Hide Templates’ MAC policy

• Note that this policy applies to the Document Itemtype (per the ‘Applied To’ tab)
• Note that Update and Delete Access Rights have a Policy Rule assigned to them

3. From the sidebar menu, open the Rule Editor
4. Double-click on the Rule ‘Diane Prescott and Terry Adams’ to expand the Rule syntax:

The current Users’ login names must equal ‘dprescott’ OR ‘tadams’
Whenever the current Item has the ‘Is Template’ flag set to true (1)
OR true if not a template (retains existing right)

Definining User Access With MAC Policies

 12

MAC Policy Structure
The Boolean logic defining a Condition can be a simple expression or a complex structure of expressions
with User Properties, Item Properties, user-defined Environment Attributes, and data sets called Derived
Attributes which ultimately solve to a single true/false value as a Rule Condition.

Resolve Boolean Expressions to a Single True/False Result
Each unit expression can be combined with Logical Operators (AND, OR NOT) to define Conditions. MAC
Policies often evaluate attributes of the User requesting access in expressions with attributes of the
(requested) Item to decide whether (or not) to revoke that User’s access to the Item. Therefore, MAC
Conditions often have the structure:

<User attribute expression> AND <Item attribute expression>

User attributes are referenced as CurrentUser.<attribute>, and Item attributes are accessed as
CurrentItem.<attribute>:

• CurrentUser is always the current logged in user in the expression being evaluated in the Rule.
• CurrentItem is always the item being accessed, as configured in the MAC Policy under the

“Applied To” tab.

For instance:

Definining User Access With MAC Policies

 13

MAC Condition Hierarchy Example
The Attribute is the value(s) used in Boolean Expressions, whether a standalone Boolean Attribute or
juxtaposed with others using Comparison Operators to determine a true/false result.

This unit expression can then be used as is or used in a nested expression structure to ultimately
produce one single Boolean result. When fully defined, the Condition is applied to one or more Access
Rights to determine whether or not to unilaterally revoke that right if the Condition is false.

(The slide automation demonstrates this progression)

Definining User Access With MAC Policies

 14

MAC Attributes

In MAC the term attribute is a general abstraction for any value or set of values that can be used within
a boolean expression. They may be single-valued, or multi-valued, and used interchangeably where type
and cardinality allow. MAC Attributes may be any one of the following:

• A Constant of the correct datatype, cardinality, and value.
• A Property defined on the current Itemtype being accessed.
• A Property on the User Itemtype for the current user making the access request.
• Environment Attribute dynamically set by execution of a (custom) Method.
• Derived Multi-valued Attribute produced from the results of a Query Definition.

Adding Custom Itemtype Properties as Supported MAC Attributes

Only custom properties added to the mp_PolicyAccessItem ItemType can be referenced in a MAC
expression. To add custom properties edit the mp_PolicyAccessItem ItemType and add any properties
that you wish to reference as Attributes - e.g., clearance_level below:

Definining User Access With MAC Policies

 15

Method Based Environment Attributes
Attributes for MAC Expressions can be defined as return values of methods using the MAC Environment
Attribute. The item is given a Name, which can be referenced in MAC expressions. A Method is
provided, to compute a value which may be:

a) Boolean
b) String or
c) Integer

The value is then resolved by Method logic to serve as an Attribute in MAC expressions. The example in
the MAC documentation provides an example where a Boolean attribute determined true if the request
is being made during “work hours” as defined the Method code provided in the appendix.

This approach allows for high levels of flexibility in definition of Attributes that are not necessarily based
on User or Item properties.

Definining User Access With MAC Policies

 16

Using the Rule/Expression Editor
The Expression Editor simplifies the definition of MAC Conditions. CurrentItem, CurrentUser Attributes
and Environment Attributes are available for use in Expressions. These can be interactively combined
with Logical Operators (AND, OR NOT) to collectively produce a single TRUE/FALSE result – i.e.,
Condition.
While examining an existing MAC Policy in an earlier exercise we used the Expression Editor from the
sidebar menu of the Hide Templates MAC Policy. We will review the Editor in detail and use it to define
a new Policy in upcoming exercises.

Definining User Access With MAC Policies

 17

Built-in Helper Methods Simplify Expression Logic
The Expression Editor provides Helper Methods to simplify User, Item and String evaluation as detailed
below:

CurrentUser.IsMemberOf (
 <Identity Name>
)

Returns true if the current user is a member of a (non-system)
Identity <Identity Name>, otherwise it returns false.

CurrentUser.IsMemberOf (
 Property<Item>
)

Returns true if the current user is a member of the Item
Property of type Identity. For example:
CurrentUser.IsMemberOf(CurrentItem.identity_id)

String.Contains (
 <StringToSearch>,
 <SearchForString>
)

Returns true if <SearchForString> is a substring of
<StringToSearch>, otherwise it returns false.

CurrentItem.
HasUserVisibilityPolicyAccess()

Returns true if the current user has access to the current item
based on active User Visibility Rules. This function can only be
applied to User, Alias, Identity Item Types.

Note: For Extended Classification XClass Methods IsXPropertyDefined(), IsClassifiedByXClass() are
available for CurrentItem and CurrentUSer. Refer to MAC Policies Documentation for more information.

Definining User Access With MAC Policies

 18

Creating a MAC Policy
In this exercise, we will work together to define a new MAC Policy, activate it, and observe its behavior.
When activated, the policy will override the normally acceptable access to Documents even if permitted
by the Permission in place. It configures this constraint to only certain group members as well.

The business use case is to prevent Asset Editors from being able to access Preliminary Documents.

Try It … A Simple MAC Policy Based on Item LifeCycle

1. Navigate to Administration->Access Control->MAC Policies and create a new MAC Policy named
‘Test Policy’

2. Under the ‘Applied To’ tab, add a reference to Document Itemtype, and Save the policy

3. This displays a new sidebar button for the Expression Editor Pane. Open the Editor.

4. Use the ‘New Condition’ toolbar button to add a new row to the Rules grid. You will now be
able to type in the lower pane to define expressions.

5. Enter ‘CurrentItem.’ (note period) to see the available Properties for use in the Expression

Definining User Access With MAC Policies

 19

6. Select ‘CurrentItem.State’ then type ‘=’Preliminary’

7. Use spacebar to display Operators, choose AND

8. Add another space, then type NOT

9. Next select ‘CurrentUser.IsMemberOf(‘Asset Editor’). The expression should look like this:

(CurrentItem.state = ‘Preliminary’) AND (NOT CurrentUser.IsMemberOf(‘Asset Editor’))

10. Next add an OR expression to allow access to Documents that are not in review:

11. In the Name field enter ‘Asset Editor Access’

12. The green checkmark indicates that there are no syntax errors.

13. Save the MAC Policy.
Note: the Rule syntax will be reformatted as shown above after saving.

14. Return to the main MAC Policy form, and add the new condition to Get and Discover Access
Rights

15. Click Done, and use the More Toolbar command to Activate the Policy

16. You may get a pop-up indicating that more than one user is logged in, click OK

17. Log out and log in as mmiller (Mike Miller) who is an Asset Editor.

18. List Documents. Try to list Documents that are in state ‘Preliminary’ using the search bar.

19. Deactivate the Policy as Admin and login once again as Mike Miller. List Documents with state
‘Preliminary’ again.

Despite the Permissions assigned to Documents by the LifeCycle, MAC conditionally
overrides access for members of the group when active.

Definining User Access With MAC Policies

 20

Sample Environment Attribute Method
Environment Attributes allow values used in expressions to be defined using custom Method logic rather
than Property values. The following example shows how to write a method ‘isWorkHours’ that returns
the value ‘true’ from 8AM to 8PM server time, Monday through Friday, otherwise ‘false’:

//MethodTemplateName=CSharp:Aras.Server.Core.AccessControl.EnvironmentAttributeMethod;

var startWorkTime = new TimeSpan(8, 0, 0); var endWorkTime = new TimeSpan(20, 0, 0);

var currentDateTime = DateTime.Now; var isWorkDay = DayOfWeek.Monday <=
currentDateTime.DayOfWeek && currentDateTime.DayOfWeek <= DayOfWeek.Friday;

var isWorkTime = startWorkTime <= currentDateTime.TimeOfDay && currentDateTime.TimeOfDay <=
endWorkTime; var isWorkHours = isWorkDay && isWorkTime;

attribute.SetValue(isWorkHours);

This Environment Attribute ‘work_hours’ could be referenced in a Rule Expression by Name:

Definining User Access With MAC Policies

 21

Summary Thus Far
We have learned that MAC is the final layer of the Innovator Access Control ‘Stack’, that is to say that
regardless of any established access MAC can remove the Access Right that a MAC Rule is assigned for
ultimate control. MAC revokes existing access, it does not re-assign permission (potentially granting
access) like other policies may.

Rules are Boolean expressions evaluating Attributes. Attributes may be:

- Property values on Items,
- Property values on Users,
- Dynamically generated values via Method code (Environment Attributes),
- They may also be Collections derived from Query Definitions, called Multivalued Derived

Attributes

Multivalued Derived Attributes will be the focus of the remainder of this course.

Definining User Access With MAC Policies

 22

Attributes Can be Multi-valued Collections Derived by Query Definition
Multi-valued Derived Attributes have been added to MAC Policies allowing attributes to be collections
(sets) of values derived from Query Definitions. This provides an extremely flexible way to form Boolean
expressions to implement logic to control access to data.

For example, a query could derive all ITAR levels that a User has been added to, provided the ITAR level
was a container Item with a relationship to User. Another could derive all Programs where a specific
Customer was involved, provided the Customer item was assigned to the item property on the Program
item. These Collections can be evaluated in Expressions using set operations like ‘Overlaps’, ‘Contains’,
‘IsEmpty’ as shown below:

Definining User Access With MAC Policies

 23

Derived Attribute Definition Itemtype
Derived Attributes are created and managed using Derived Attribute Definitions Items. The fields are
completed as follows:

- Name becomes the symbol used to reference the Derived Attribute in Expressions

- The Collection has a specific Datatype, i.e., the type of query results
Queries are defined under the Attribute Queries tab.

- “Applied To” Itemtype (root & scope)
- The second column is double-clicked to open the Query Definition form

o The Query must result in a Target Property of the Leaf Item in the query structure

- Target Property will appear in the (read only) third column when the Query is defined. Type
must match ‘Datatype’

Definining User Access With MAC Policies

 24

Generating an Attribute as a Collection
In the example shown by the diagram above, the user is a member of three Programs. That is to say
that Program Itemtype has a Relationship to the User Itemtype, and this User has a Relationship to three
Program instances.
The query language used to show data in a Tree Grid View would use the same construct to derive
target property values from the parent Program. In fact, one could test the logic by executing a Query
Definition with the same query.
When saved, the name of the Derived Attribute can be referenced in a MAC Rule Expression as a
Collection Attribute.
For example:

Collection.Overlaps (

CurrentUser.<derived_attr name1>,

CurrentItem<derived attr name2>

)

Derived Attributes can generate Collections in a manner similar to what we do for TGV content, with
some restrictions. The query must generate values consistent with the ‘Datatype’ setting and
compatible with other attributes and operators.

Performance considerations

Long running queries will impact performance, so queries should be kept concise and the data model
against which they run should be evaluated for impact.

Definining User Access With MAC Policies

 25

Query Definition for Derived Attributes
The Attribute Queries tab provided with the Derived Attribute form provides the interface for defining
multivalued collections for MAC rules using Query Definition. The three columns are described above,
and columns 2-3 are populated when the Query Definition is completed.

The Query Definition window is accessed by double-clicking on the ‘Leaf Item’ column.

Definining User Access With MAC Policies

 26

Try It … Derived Attribute to get Programs the Current User is a Member of:

1. From Administration->Itemtypes open Program for editing
2. Adda new relationship to User and click Done

3. Navigate to Administration->Access Control->Derived Attribute Definitions and create a new

Derived Attribute
• Assign Name as ‘User Programs’
• Set Datatype to ‘Item’
• Add a new Attribute Query and assign the Applied To Itemtype (column 1) to ‘User’
• Double click on column #2 Leaf Item to open the Query Editor
• Define a query as follows:

o Add Related Item > Using Referencing Item… Program User

4. From the Program User row, select (target) Property source_id

Definining User Access With MAC Policies

 27

5. Click OK to close the query window
6. Save the Derived Attribute

The Derived Attribute ‘User Programs’ can now be used in Rule Expressions. We will use this
Derived Attribute in MAC rules shortly.

Note:

If desired, you can use a standard query via Administration->Configuration->Query Definition to
duplicate this query and test results against the database. Keep in mind that Derived Attributes only
use the Target property value in resulting Attribute Collections.

Definining User Access With MAC Policies

 28

Using Derived Attributes in MAC Policy Rule Expressions
At this point we have created a multivalued attribute that dynamically returns all Programs that a User is
a member of. We now need to define another Derived Attribute to obtain the list of Projects that the
Document is used in.

The query should return all Program parents of Projects where the current Document is used – that is to
say, where the Document being accessed is used as a Deliverable on a Project under the Program. This
attribute will then be used in a Boolean Rule expression to determine whether a User is assigned to the
same Program where the Document being accessed is used – or not. If not, then any existing access is
revoked.

Definining User Access With MAC Policies

 29

Try It … New Derived Attribute to get Programs containing Project Documents:

Navigate to Administration->Access Control->Derived Attribute Definitions
Create a second Derived Attribute:

1. Name: ‘Document Project Programs’
2. Datatype: Item
3. Add a new row in the ‘Attribute Queries’ tab
4. Enter ‘Document’ in the Applied To […] field
5. Double click on column #2 to open the Query Definition editor.
6. Define the query as follows:

o (right mouse menu) Add Related Item > Using Referencing Item…

Definining User Access With MAC Policies

 30

o Document <-Referenced by Project Docs

o With the new row selected:
Add Related Item > Using Item Property (source_id)

o To the third row: Add Related Item Using: Referencing Item “Program Project”

Definining User Access With MAC Policies

 31

o With the fourth row selected, Select Property ‘source_id’
o Save and hit OK

o Click OK to save the Query Definition
o Attempt to save the Derived Attribute ‘Document Project Programs’
o You will get the following error:

o Keep the Derived Attribute window open, and proceed to the next page…

Definining User Access With MAC Policies

 32

Increasing the Depth Limit After Careful Examination
The system limits the depth of query levels by default to 2, which disallows attribute queries of more
than 2 levels. Because Documents are Deliverables on Projects (under the Program) one of the queries
must traverse the additional level to reach the parent Program.

In this case, we know that the number of Programs is low and will remain so, and the Project within
each Program are few. Unlike BOMs or other complex structures, it is not likely that this query will have
a performance impact.

However, keep in mind that once this limit is increased no other queries will be constrained and
therefore other queries could possibly have a performance impact. It is important to carefully assess
the potential performance impact.

Try It … Increase Depth Limit of Query

1. Navigate to Administration->Variables
2. Create a new Variable ‘ac_QueryDepthLimit’
3. Assign a value of 3 and click Done
4. Return to the ‘Document Project Programs’ Derived Attribute to Save it successfully

Definining User Access With MAC Policies

 33

 Implementing the Use Case
As mentioned earlier, the business use case is to restrict access to Documents under Programs to those
assigned as Members on these same Programs. Once both Derived Attributes are defined, we may build
a MAC Policy that uses them to enforce this use case.

Try It … Create and Activate the MAC Policy Using Derived Attributes

1. Navigate to Administration->Access Control->MAC Policies

2. Create a new MAC Policy, give it a name like ‘Program User Document Access’

3. Applied to Itemtype is ‘Document’

4. Save and use the sidebar menu to open the Rule Expression Editor

5. Add a new Rule giving it a name like ‘Doc Access for Program Members’

6. Use the following expression to define the Rule (note intellisense):

Collection.Overlaps(CurrentItem.[Document Project Programs], CurrentUser.[User Programs])

 (this green checkmark indicates proper syntax, and can also be clicked to save expression)

Definining User Access With MAC Policies

 34

7. Return to the Main MAC Policy Form and assign this Rule to the Access Right ‘Get’

8. Click Done to Save the MAC Policy

9. From the More Menu […] Activate the MAC Policy

Definining User Access With MAC Policies

 35

Testing the MAC Policy
Once that the MAC Policy is active, Documents that are used as Deliverables on Project (child items) on
any Program will only be accessible by Members of that Program. Let’s try this out:

Try It … Exercise the MAC Policy

1. Navigate to Portfolio->Programs in the TOC and open MP002 for editing.
2. Open the ‘1923 Carbon Fiber 3D Printer’ Project from the Projects relationship tab. Edit and

add one or more Documents to the Deliverables tab, and click Done.

3. Return to Program MP002. Add some easily recognizable Users to the Member tab we created
in an earlier exercise. Do not add Innovator Admin yet. BTW: If there is no Program User
relationship on Program Itemtype, add it – then return to complete this step.

4. Save the Program.

Definining User Access With MAC Policies

 36

5. Remaining logged in as Admin, attempt to open ‘Deliverables’ (related Documents) on any
Project child items to the Program.

Because we have associated ‘Get’ Access Right with this Rule, only those who are listed as
Members in the parent Program will be able to open a Document Deliverable anywhere in this
Program scope.

6. From an incognito window, log in as dprescott, bmoore, or any of the Users you added to the
Members tab on Program MP002.

7. From Portfolio->Projects in the TOC open 1923 Carbon Fiber 3D Printer
8. Open any Document from the ‘Deliverables’ tab. Close the Project window and return to the

parent Program MP002.
9. Return to the admin session window and add yourself (admin) to the Members list on Program

MP002.
10. Re-open 1923 Carbon Fiber 3D Printer Project and attempt to open the Document Deliverable.

Other Things to Try
• Add the Rule to different Access Rights, for instance ‘Can Discover’
• Instead of adding to Members, add yourself to ‘Exempt Identities’ on the MAC Policy Itself
• Create more than one Rule and use various criteria on different Access Rights
• Define a new Rule to use a Property ‘Security Level’ on the Program such that:

o Any Program Members with [Security Level] equal to or greater than that on the
Project->Document Relationship Item can retain the Access Right(s) configured in a MAC
Policy

• Explore other Use Cases…

	ACE-2024-Training-Guide-Cover MAC.pdf
	ACE 2024 Defining User Access with MAC Policies Content
	Overview
	Course Goals
	Objectives
	Review: Access Rights
	Try It … View a Permission Item:

	Role-based Teams enable many assignment patterns on a single permission matrix
	Try It … View a Team Item:

	Access Control by Occurrence in a Relationship Structure
	For more information:

	Mandatory Access Control
	Advanced Mandatory Access Control with Multi-valued Derived Attributes

	How Access Control is Layered
	Applying Conditions to Access Rights
	Examining a MAC Policy Rule
	Try It … View an existing MAC Rule:

	MAC Policy Structure
	Resolve Boolean Expressions to a Single True/False Result

	MAC Condition Hierarchy Example
	(The slide automation demonstrates this progression)
	Adding Custom Itemtype Properties as Supported MAC Attributes

	Method Based Environment Attributes
	Using the Rule/Expression Editor
	Built-in Helper Methods Simplify Expression Logic
	Creating a MAC Policy
	Try It … A Simple MAC Policy Based on Item LifeCycle

	Sample Environment Attribute Method
	Summary Thus Far
	Attributes Can be Multi-valued Collections Derived by Query Definition
	Derived Attribute Definition Itemtype
	Generating an Attribute as a Collection
	Query Definition for Derived Attributes
	Try It … Derived Attribute to get Programs the Current User is a Member of:
	Note:

	Using Derived Attributes in MAC Policy Rule Expressions
	Try It … New Derived Attribute to get Programs containing Project Documents:

	Increasing the Depth Limit After Careful Examination
	Try It … Increase Depth Limit of Query

	Implementing the Use Case
	Try It … Create and Activate the MAC Policy Using Derived Attributes

	Testing the MAC Policy
	Try It … Exercise the MAC Policy

	Other Things to Try

