
 Packaging and Continuous Integration

1

Aras DevOps
Packaging and Continuous Integration

ACE 2024

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

1

Packaging and Continuous Integration
Overview

In this session, you will learn the basic guidelines for packaging items for Aras Innovator and how to use
the packages within Aras DevOps Continuous Integration processes.

You will also build a simple project based on a use case, add all created items into the project package,
export the project package into the customer repository, and commit the changes using Git (Source
Control Management), after validation with the ContinuousIntegration pipeline.

Finally, you will rebuild your local Innovator instance with the project items with the BuildAndDeploy
pipeline.

Objectives

• Understand Aras DevOps (AD)

• Understand packaging in Aras Innovator

• Differentiate between packaged changes and instance specific changes

• Understand packaging in Aras DevOps

• Export changes for Aras DevOps CI/CD (Continuous Integration/Continuous Delivery) control

• Understand the impact of changes in working directory vs staged or committed changes

• Build a sample project

• Package and export sample project

• Validate and commit sample project into local repository

• Rebuild local innovator instance with BuildAndDeploy pipeline

ACE 2024

2

Aras DevOps High-Level View
Pre-configured Continuous Integration template

• Provides GIT for Source Control Management leveraging a Pull Request (PR) process.

• Provides Azure Pipelines for executing automated tests, code scans, etc.

• Provides Artifactory for storing all build artifacts to allow for reuse in deploying to multiple
environments.

• Provides an SIT server to allow for end user/QA validation and review of work.

• Provides TAF license so your teams can build robust automated tests.

• Dedicated team to help ensure the pipeline is operational.

Continuous Delivery

• Aras DevOps provides the full CI experience. Continuous Delivery is reviewed on a project-by-
project basis to meet customer needs.

• Aras Enterprise offering provides the full CI/CD offering for managing deployments as well as
continuous integration.

• Full Continuous Delivery pipeline available instantly to support your DevOps Journey

• Continue to benefit as Aras evolves and introduces new enhancements into the Aras DevOps
offerings.

• No additional internal hardware/maintenance required for supporting the pipeline.

• Uses the same tools and process leveraged by Aras Solution Delivery.

• Can be leveraged by downstream teams (e.g., support and upgrades) to help improve overall
customer satisfaction.

• Includes TAF license for helping build/extend your test automation.

 Packaging and Continuous Integration

3

Standard Development Environment (SDE)

• An environment with tools and processes that enables you to adopt industry-common CI/CD
practices.

• Standard Tools and Software – all tools and software (required and optional) and its integrated
configuration that we are using locally for our goals (Git, Visual Studio, MS SQL and so on)

• Aras Tools – all proprietary software and solutions that we are using (Aras VS Plugin,
Import/Export, TAF, …)

• Services – hosted services and applications accessible via network/Internet (Azure DevOps –
base tool for the SDE CI/CD and other basic concepts)

• Industry Practices – how we are using everything listed above (Code Guidelines, Industry Best
Practices: CI/CD, DevOps)

• Aras Pipelines – formal definition of start to end and iterative processes with roles, activities and
other detentions that helps to reach local and global goals.

ACE 2024

4

Packaging in Aras Innovator
Aras Innovator is a low-code platform, which means users can add truly little code to achieve
outstanding results rapidly. It also means user can use configuration to express business rules, such as a
life cycle map.

When working directly with an instance of Aras Innovator, these changes are stored anonymously within
and can reference any other items already in the system and vice versa.

Making such changes directly in a business-critical system serving users is not good practice. As
mentioned earlier, a central focus of DevOps is to instill the discipline of well-managed solution
configurations, including change management and implementation.

In larger solution development engagements exported packages and their elements can be put under
version control and can be input to an automated build process (CI / CD).

The following sections explain how to export these changes into named packages, define explicit
dependencies, and commit the changes for proper configuration and version control.

This way, it is ensured that the build system can replicate the swiftly accomplished interactive tasks -
thus introducing configuration and version control discipline to the low-code product.

The first step in this procedure is defining a package by a Package Definition item, which then can be
exported and re-imported to the central source control system for further usage in the builds.

 Packaging and Continuous Integration

5

Understanding Packaging
Conceptually each package is a collection of item IDs. Additionally certain ItemTypes were introduced to
support package functionality.

A newly installed Aras Innovator database contains Package Definitions of two types:

• Aras Core Packages – These packages are used to define the basic structure of every Aras
Innovator database, regardless of what solutions are used in the database. They are created and
managed by Aras for the Core system.
Do not modify, because any modifications (addition, change of value, deletion) will put your
Aras Innovator installation functionality at risk.

• Aras Solution Packages – These packages define the elements that comprise the definition and
functional rules of different Solutions data models. They are created and managed by Aras for a
dedicated Solution. The names typically begin with com.aras.innovator.solution. Modify with
care!

Try It … Explore existing Package Definitions

1. Navigate to Administration > Configuration > PackageDefinitions.

2. Run a blank search.

3. Open some of the Package Definitions, and note their structure, for example
com.aras.innovator.core or com.aras.innovator.solution.PLM.

Notes:

• A package name must be unique within a database of an Aras installation, and it can be any text
up to 64 characters (excluding special characters. spaces are allowed).

• Package names should be globally unique, at least within your Aras ecosystem, and should
follow a naming convention. We recommend using a “.” notation for names. A good example for
this would be to follow the java package naming conventions.

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

ACE 2024

6

• Standard Aras packages from Applications and Core modules already follow a convention. The
namespaces defined in this convention are reserved for Aras internal packages and shall not be
applied outside of Aras!

 Packaging and Continuous Integration

7

Solution Package Overview
The components of a Solution Package are outlined in this diagram. The number of Package Groups and
Package Elements are dependent on an Aras Innovator release and can grow with each new release.

Package Definition

A Package Definition is a collection of Package Groups that contain Package Elements. For simple
solutions you should be able to define a single package and add all relevant elements to it.

With larger solutions there can be cross dependencies between elements where one element of the
same group may need to be created before the other. Or your solution is modular and has optional
components. In this case your solution should be broken down into multiple packages.

Package Definitions (in short, Packages) are exported from an Aras Innovator system they are defined in
using the Packaging Utilities.

Package Groups

You do not need to create these. They are created automatically when adding an Element to a Package
Definition. Names of Package Groups are built-in in the Modeling Engine. (like: Method, ItemType, List,
RelationshipType, etc.)

Package Elements

In the packaging process Package Elements are added to a Package Definition. As an Aras Innovator
Administrator, you will have buttons or menu actions “Add to Package Definition” to add selected
elements to a package.

ACE 2024

8

Understanding Packaging and Instance Specific Changes
Aras Innovator is very flexible in enabling users to do rapid application development and proofing out
concepts.

This flexibility requires management to satisfy good practices developed in the industry to manage
configuration of enterprise systems. ITIL (Information Technology Infrastructure Library) has such
controls in the form of practices in the latest versions. SOC 2 (System and Organization Controls 2)
certification also requires strong configuration (change) management.

For such reasons, administrators must adopt the discipline of extracting such changes and managing
them in DevOps. If for no other reason than to ensure the next release does not wipe out their changes.

When changes are properly change-controlled then the corresponding solution configuration can be
reproduced with assurance.

The diagram summarizes the impact of anonymous items in an instance and the effect of defining,
exporting, and providing packages to the build system.

On the left, the user has four items (A, B, C, and D). A, and D represent new or modified items which are
properly packaged, exported, copied, and assigned to the change control system Git. B and C represent
Innovator instance specific items which are not intended for use in the next build and therefore
consequently not packaged.

The build system then produces the instance on the right. It is important to observe that the Aras
Innovator instance on the right excludes items B and C, highlighting the capability to dictate what
DevOps builds. This capacity to specify what DevOps creates is a foundational element of utilizing
DevOps.

Note: The visualization is reduced to changed items only.

 Packaging and Continuous Integration

9

Guidelines for AML Packages
Please do not modify package structure created by Import/Export tools. It might cause compatibilities
issues for the new tools provided by Aras and issues for the support and future upgrades. Also, it will
cause baselines synchronization issues.

When considering rules for AML Packages let us differentiate three different types of AML Packages:

• Custom Packages

Packages you create and manage, containing items that you created and that you manage.

• Aras Solution Packages

Packages created and managed by Aras for a dedicated Solution. The names typically begin with
com.aras.innovator.solution. Modify with care!

• Aras Core Packages

Packages created and managed by Aras for the Core system.
Do not modify, because any modifications (addition, change of value, deletion) put your Aras
Innovator installation functionality at risk.

The rules are meant to support you in keeping the functionality of your current Aras Innovator
instance as well as reducing the risk of future collisions between changes you made, and
changes made by Aras. Ignoring the rules can lead to future issues with support, upgrade, and
baseline synchronization.

The packaging guidelines include keeping items in their original packages. Therefore, in our use case, we
will change the CAD and Document forms within the Aras “com.aras.innovator.solution.PLM” solution
package, which already exists in the baseline.

If you have a set of common items leveraged by multiple applications, which will force a circular
dependency, it should be part of a Common Utility package loaded first.

Examples: Lists, Method, Conversion Rules, Permissions, Identities, some ItemTypes, etc., that could be
used across multiple applications/packages.

ACE 2024

10

Scope of Next Activities
In the next steps we will implement a small User Story and learn how to prepare changes to be
committed. We will create commits with the use-case implementation in the local repository.

Work in LDE

• The project development work for each developer begins in their Local Development
Environment (LDE), after they ensured that the trainingxx branch has been checked out (this
branch was created in an earlier step from the Team’s repository corresponding branch).

• Once each developer has completed their local work, they commit their user story contribution
to their local repository and ensure that it is validated with the ContinuousIntegration and/or
BuildAndDeploy pipelines.

• Each developer performs a git fetch/rebase operation from the appropriate Team’s repository
branch to ensure that they are fully synchronized. Any conflict that occurs because of this
operation should be fixed before taking the next steps.

Work in SDE

• Each developer performs a git push operation to their personal fork’s trainingxx branch.

• In Azure DevOps, each developer creates an appropriate Pull Request (PR) to present their work
to the review team.

• If the developer’s contribution is accepted it is merged into the Team’s repository trainingxx
branch.

Note: When working on one feature at a time then only the “development” branch is necessary.

 Packaging and Continuous Integration

11

Exporting a Package
Once the Package Definition is complete, the package can be exported using the Export utility. This
utility is a separate executable named export.exe that is available on the Aras Innovator CD image, or
that may be downloaded from https://www.aras.com/en/support/downloads. It is important to select
the Export utility belonging to the version and service pack of the installation from which you do the
export.

The Export utility allows you to select a Package Definition from the database and create a package
folder structure in the file system. Each Package Group (ItemType, Form, etc.) becomes a separate
subfolder in the file. Within each subfolder, each exported Item is represented as an AML file with the
same name as the exported Item.

In the example above, two Form definitions are exported and contained in the Form subdirectory. Note
the remaining subfolder names – each represents a kind of exported Item from the database.

Try It … Open the Export Utility

1. Use Windows File Explorer and navigate to the place where the export.exe file has been stored.

For example: C:\Users\devops\Desktop\Apps\PackageImportExportUtilities_R27\
PackageImportExportUtilities (or as directed by instructor).

2. Double click the export.exe file to run the Export Utility.

3. In the Server field, enter the URL of the Aras Innovator Server (as provided by instructor).

4. Enter a valid administrator username and password in the respective fields of the browser that
opens. In Aras classroom setting, use the Username of admin with the Password of innovator.

5. Click the Login button.

https://www.aras.com/en/support/downloads

ACE 2024

12

Use Case #1: Reviewing the Sample Project
To demonstrate how the development process works, a small project has been designed, and this will
allow users to collect information in a Design Request item.

The first sprint should create the following:

• ItemType: Design Request

• Properties:

• Request Number (Sequence)

• Title (String)

• Completion Date (Date)

• Patent (Boolean)

• Form (Display properties for data entry)

• Method triggered by a Server Event (If Patent=1 the Completion Date is Required)

Requirement: The Design Request item should display the four properties on the form (custom and
system properties). If the user checks the patent checkbox (Boolean) the completion date must be filled
in to save the item.

The User Story has been created in a previous exercise, with the following hierarchy:

• User Story: Add New Design Request ATxx (xx: as provided by instructor)

• Parent Feature: Design Request Management ATxx

• Grand-Parent Epic: Change Management ATxx

 Packaging and Continuous Integration

13

Project Naming Conventions and Starting Branch
For the first sample, project development begins in the feature branch named trainingxx. (xx: as
provided by instructor).

This branch was created in the customer repository in an earlier exercise. Make sure that the trainingxx
branch is checked out before continuing.

Establish Naming Conventions

Naming conventions, including naming of the packages, is strongly recommended. Review Aras
guidelines for naming conventions and adopt them as appropriate.

In our project, we will use the affix atxx (atxx: as provided by instructor), as either a prefix or a suffix.

ACE 2024

14

Preparing the Local Development Environment
You may go back to unit “Setting Up a Local Development Environment” to prepare your local
environment for development.

Recommendations

• Local Development Environment: should be prepared from the latest approved project baseline
to ensure all the latest changes are included.

• Fetch and rebase

• Should be performed multiple times throughout your development work, within the
duration of the sprint, to ensure you have the latest changes that have been accepted in the
team branch you are working on.

• Helps minimize the number of conflicts/errors in your fork, and in the team repo; this also
helps shortening the team’s code review process.

Note: refer to Local Development Environment Setup in subscriber portal for more details.

https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1004/local-development-environment-setup

 Packaging and Continuous Integration

15

Creating a Package
Follow the steps below to create a new package named atxx.training.design_management (atxx: as
provided by instructor).

Try it … Create a Package

1. In Git Bash or Git Extensions ensure the trainingxx branch is checked out in the Local
Development Environment.

2. In a browser window log in to your Innovator client.

3. Navigate to Administration > Configuration > PackageDefinitions and click the New
PackageDefinition button.

4. Enter atxx.training.design_management for the PackageDefinition Name and click Done.

ACE 2024

16

Defining a New Item Type: atxx Design Request
Follow the steps below to create a new ItemType named atxx_DesignRequest (atxx: as provided by
instructor), with the following details:

• A new Sequence: atxx_DesignRequestSequence that will be used in a new property to number
the design requests (DR-0010, DR-0020, etc.)

• New Properties to collect data about the request: atxx_title (Title), atxx_completion_date
(Completion Date), atxx_patent (Patent), and atxx_request_number (Request Number)

• Permissions: Can Add (World) and Default Access

• A new Method: atxx_DesignRequestValidate for the OnBeforeAdd and OnBeforeUpdate Server
Events

• Assignment to the root of the TOC for quick access

Try it … Create a Sequence

1. Navigate to Administration > Sequences and create a new Sequence.

2. Name the sequence atxx_DesignRequestSequence.

3. Provide the following sequence values:

Prefix DR-

Initial Value 0

Current Value 0

Suffix

Pad With 0

Pad To 6

Step 10

4. Click the Done button to save the atxx_DesignRequestSequence.

 Packaging and Continuous Integration

17

Try it … Create the Design Request ItemType

1. Navigate to Administration > ItemTypes and create a new ItemType.

2. Enter or select the following values on the ItemType Form:

Name atxx_DesignRequest

History Template Default

Singular Label ATxx Design Request

Plural Label ATxx Design Requests

Show Parameters Tab When Populated

Default Structure View Tabs Off

Versionable Checked

Small/Large Icons Choose from provided image list

Note: leave all other settings to default values

3. Click the Save button to save your new Design Request ItemType.

4. Assign the following permissions by clicking on each Relationship tab and adding a new row
(Add button):

Relationship Tab Name Value

Can Add World (Can Add is checked)

Permissions Default Access (Is Default is checked)

5. Click the Save button to save your new Design Request ItemType.

Try it … Create Custom Properties for the Design Request

1. Open the new Design Request ItemType in Edit mode (if necessary).

2. Select the Relationship tab labeled Properties and click the New Property button to add new
properties.

3. Use the table below to provide the Name, Label, Data Type, and additional settings for each
new property for the Design Request ItemType.

Property Name Label Data Type Length Width Sort KNO

atxx_title Title String 64 250 20

atxx_completion_date Completion Date Date 120 40

atxx_patent Patent? Boolean 100 30

atxx_request_number Request Number Sequence 100 10 1

Note: KNO is Keyed Name Order

4. Click the Save button to save your new Design Request ItemType.

5. Expose the following standard properties:

Property Name Label Width Sort

created_by_id Created by ID 120 50

created_on Created on 120 60

state State 100 70

6. Click the Done button to save your new atxx_DesignRequest ItemType.

ACE 2024

18

Try it … Update the New Design Request Form

1. Open the new atxx_DesignRequest ItemType.

2. Select the Relationship tab labeled Views, right-click on the atxx_DesignRequest form, and
select Actions > RebuildViewAction from context menus.

3. Right-click again on the atxx_DesignRequest form and select Open.

4. Select Edit in the atxx_DesignRequest form , position the custom fields and standard fields as
displayed in image:

5. Click the Done button to save changes to the new atxx_DesignRequest Form.

 Packaging and Continuous Integration

19

Creating and Saving a Method
Follow the steps below to create a new Method named atxx_DesignRequestValidate (atxx: as provided
by instructor).

Try It … Create and Save a Method

1. Navigate to Administration > Methods and click the Create New Method button.

2. Enter atxx_DesignRequestValidate for the Name.

3. Select Server-side and C# for the method basic properties.

4. Enter the following code:
string completionDate = this.getProperty("at00_completiondate",string.Empty);

string patent = this.getProperty("at00_patent", "0");

if (string.Equals(patent, "1") && (string.IsNullOrEmpty(completionDate)))

{

 return this.getInnovator().newError("Patent requires completion date!");

}

return this;

5. Ensure the Execution allowed to field is set to World.

6. Click the Done button to save the new method.

ACE 2024

20

Subscribing Method to Server Events
Follow the steps below to subscribe the newly method to the OnBeforeAdd and OnBeforeUpdate to
ensure newly created or existing Design Requests cannot be saved without a Completion Date if the
Patent? checkbox is selected.

Try It … Subscribe Method to Server Events

1. Navigate to Administration > ItemTypes and open the atxx_DesignRequest ItemType in Edit
mode.

2. Assign the atxx_DesignRequestValidate method to the OnBeforeAdd and OnBeforeUpdate
Server Events.

3. Click the Done button to save changes to the new Design Request ItemType.

 Packaging and Continuous Integration

21

Adding Elements to Export Package
Follow the steps below to add the following elements to the atxx.training.design_management export
package:

• ItemType

• Sequence

• Form

• Method

Try it … Add Elements to Export Package

1. In TOC go to menu Administration > ItemTypes, and at its right click on Search button.

2. Use any search criteria to find your atxx_DesignRequest ItemType.

3. Right-click on your ItemType and select menu Admin > Add to Package Definition from context
menus.

4. Select the atxx.training.design_management export package and click OK to confirm choice.

5. Repeat above steps for all elements to be exported.

6. In the atxx.training.design_management export package, go to each package group to verify its
contents.

ACE 2024

22

Adding New ItemType to TOC
Follow the steps below to add the new atxx_DesignRequest ItemType to the root of the TOC Design
category.

Try it … Add New ItemType to TOC

1. In TOC go to menu Administration > Configuration > TOC Editor.

2. Select the Design category and click on Add ItemType button.

3. Find your atxx_DesignRequest ItemType and ensure World is selected in the Access field.

4. Click the Save button when done.

5. Create a few Design Requests and test to make sure the method logic works correctly:

a. An error is returned if one tries to save a new Design Request with a Patent but without a
Completion Date.

b. An error is returned if one tries to update and save an existing Design Request with a Patent
but without a Completion Date.

6. In TOC go to menu Administration > Configuration > PackageDefinitions.

7. Find your atxx.training.design_management export package and ensure it contains the
following additional package groups: Presentation Configuration, Command Bar Section, and
Menu Button.

 Packaging and Continuous Integration

23

Exporting Contents of New Package Definition
The Package Definition now needs to be exported. It is recommended that you export the package to a
temporary location (e.g., localExports directory) and review the imports.mf manifest file to ensure the
appropriate dependencies have been defined. The local export files in the staging area must then be
copied/merged into the AML-packages folder in the trainingxx branch of the repository.

Try It … Export Contents of New Package Definition

1. Start the Aras Export tool and login to the instance of Aras Innovator with the admin credentials.

2. Set the Export folder to a staging folder on the developer machine.
Example C:\ArasProjects\Project1\LocalExport\UC10

3. Select the Package elements and export to the local folder.

4. Examine the localExports folder contents to ensure the appropriate folders and AML files have
been created/changed.

Notes:

• Remember that the imports.mf manifest file is updated each time an export is executed in the
localExports directory. You should check this file to make sure the appropriate dependencies
have been configured if necessary.

• Because there is only one imports.mf file for the project in the repository AML-packages folder
be careful not to copy over changes from a previous configuration.

ACE 2024

24

Placing Export Package Contents Into Local Repository
It is often necessary, as in this case, to export to a local folder then copy what is necessary into the local
repository.

Try It … Place Export Package Contents Into Local Repository

1. Copy and paste the folder C:\ArasProjects\project1\localExports\UC10\design_management
into C:\ArasProjects\Project1\LocalRepo\AML-packages.

2. Accept prompts for replacement if encountered.

3. Copy the contents of the newly created imports.mf file to the existing imports.mf file in the
AML-packages folder.
Ensure that the existing imports.mf file includes the following line:
<package name="at00.training.design_management" path="design_management\Import" />

 Packaging and Continuous Integration

25

Staging and Committing Changes
It is preferable to do atomic commits to better control your work; for this reason, you may want to split
your work, by first committing all configuration work, and then committing all code-related work in
other commits, in case you need to fix some of the code in Visual Studio.

Try It … Stage and Commit Changes

1. Navigate to C:\ArasProjects\project1\LocalRepo\AML-packages\design_management\Import
and note its contents.

2. Open Git Bash and Git Extensions for the repository ..\project1\LocalRepo.

3. Verify the status of the repository in Git Bash by running git status.

4. In Git Extensions, go to the Commit to trainingxx dialog, and stage the different files, i.e.,
atxx_DesignRequest.xml, atxx_DesignRequest.xml, imports.mf, etc. (7 files in total).

5. Verify now the new status of the repository in Git Bash by running git status.

6. In Git Extensions, commit the xml files above in the Commit to trainingxx dialog, after addition
of a proper commit message, e.g., “Add Design Request 00 User Story: created new Design
Request ItemType”.

7. Click OK in Process dialog.

8. Verify again the new status of the repository in Git Bash by running git status.

ACE 2024

26

Executing AML Before/After Package Import Scripts
If database modifications need to be made before or after importing the AML-packages, two reserved
folders in the AMLDeploymentScripts folder can be used to supply additional AML statements.

Some use cases for creating custom AML may be:

• Modify or remove metadata that prevents a successful import of AML packages (for example:
server event constraints)

• Resolve circular dependencies in the AML-packages by correcting the Packages configuration in
the DB

• Add or modify any data (not metadata) that is not in the AML packages

Scripts are executed in alphabetic order, so it is recommended to prefix the XML file with a number
which indicates scripts execution order.

 Packaging and Continuous Integration

27

Executing ContinuousIntegration Pipeline to Validate Build
Validate the Build by executing the ContinuousIntegration.ps1 pipeline.

Pay attention to the results: the build scripts run an additional set of checks that treat warnings as
errors. As a result, you may see errors when running the ContinuousIntegration pipeline.

It is recommended to run the CI pipeline whenever you create or update methods: it is in general a good
DevOps CI practice to do so as it is fast and helps reduce issues in your project.

Try It … Execute ContinuousIntegration Pipeline to Validate Build

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

2. Run script: .\ContinuousIntegration.ps1.

3. Examine the output of the pipeline, and fix issues in case of failure.

ACE 2024

28

Executing BuildAndDeploy Pipeline to Confirm Build
Once you have added and committed the project files in the AML Packages directory, you can rebuild
the environment at any time using the BuildAndDeploy.ps1 pipeline. Aras Innovator and the original
(baseline) database will be reinstalled, and any AML Packages will be applied after installation.

Make sure that the export files have been successfully created and stored in the AML Packages folder in
the development repository.

Try It … Execute BuildAndDeploy Pipeline to Confirm Build

1. Access the repository directory and make sure the current sprint branch (trainingxx) has been
checked out.

2. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

3. Run script: .\BuildAndDeploy.ps1.

4. If the build is successful, a green prompt will appear. If the build fails, examine the log entries to
determine the problem (e.g., missing AML files?).

Notes:

• To avoid the issue of losing changes you have not previously exported you should execute the
ContinuousIntegration.ps1 pipeline first.

• You may also run BuildAndDeploy first in a different branch to carry out some tests and avoid
wiping out all your changes from your LDE Innovator instance.

 Packaging and Continuous Integration

29

Next Steps
In future units we will learn how to create a Pull Request (PR) to share our contribution with the team.

The next few steps will involve the following activities:

• Fetching and rebasing from/onto the Team’s repository trainingxx branch to ensure
synchronization, and minimize issues

• Pushing our locally-committed work to our personal fork trainingxx branch

• Creating a pull request to propose our work to the rest of the team for inclusion in the Team’s
repository trainingxx branch

ACE 2024

30

Customizing Aras Applications
Customization in Aras Innovator can consist of modifying existing applications or creating new
applications.

The process is the following:

1. Make required changes in Aras Innovator Instance.

Login into the Innovator Instance and make customizations as per the project requirements.

2. Include all changes in new package definition (only for new applications).
Once all changes are complete, include them in the Package Definition.

3. Export Package after the changes.
Open the Export Utility and add the necessary details to prepare for export.

4. Copying the Export Utility’s output to the Local Repo.
Once the changes are made and the files are exported, copy the top common folder, and paste
it into the local working directory of the repository (AML-Packages). During this process, be sure
to accept any file replacement warnings that may appear.

5. Modify the manifest file (only for new applications)
Ensure the manifest file includes any new packages

Stage and commit all changes to Git.
Once the necessary changes have been made to the files, it is important to stage and commit
them to the version control system (Git).

6. Run continuous Integration script to validate and verify the new build.

7. Test the new build by deploying it to local Innovator instance.

8. Share work with others.

 Packaging and Continuous Integration

31

Creating and Managing a New Module
A new module normally results in a new AML package with its own package definition. The package
definition contains all changes made to instances of Aras Innovator.

Several steps are needed for a new package in SDE:

• Definition of the package collecting all the needed items and specifying dependencies from
other packages

• Export of the package to the file system

• Locate the results properly in the repository directories

• Adapt the manifest file to contain the previous packages, but also the new one

• Assign the new and modified files to the Git repository with commit or stage including the
manifest file

Following those steps will ensure the package becomes part of the next build.

If you create a new package, it is recommended to use Java naming conventions for packages (lowercase
and dots indicating a hierarchy) and align folder names with the packages they contain.

In some use cases, modules require additional changes directly to the code tree. Such changes do not
need additional packaging, but they also need to be positioned in the correct folder and be assigned to
the Git repository.

Examples for such exceptions:

• Adding images for own icons in the customer folder

• Adding a DLL for federation and assigning it to the file method-config.xml

Note: Whenever you have updated any sections of the repository, the new or modified files need to be
staged and committed to become part of the next build.

ACE 2024

32

Use Case #2: CAD Form and Document Form Changes
The idea behind the following Use Case #2 (UC2) is to make changes to two items that already exist in
the baseline, and to integrate the changes to the future builds. The two items are the CAD Form and the
Document Form.

For one of the two items we take all necessary steps, and we will have success; the other one is used to
demonstrate a possible error when one skips the important steps of staging and changes to Git.

Since you have added the properties to existing items, there is no need to update the import manifest
file in this UC2, as no new package has been added to the solution: we only modified files.

The subsequent import during the build works because it is an amendment to the package that already
exists in the baseline.

The UC2 steps include checks and verifications which help to understand the details of the process as
listed in the table.

Step Action CAD
Form

Document
Form

Result

1 Export before changes

C:\ArasProjects\project\
localExports\FormExport1\PLM

2 Change Form in the original Aras
Innovator instance

Forms in instance have one more field
each

3a Export after changes

C:\ArasProjects\project\
localExports\FormExport2\PLM

3b View differences Differences in both forms

3c Review the manifest file in the local
repo and in the export results

The manifest file is unchanged

 Packaging and Continuous Integration

33

Step Action CAD
Form

Document
Form

Result

4 Copy export results to local repo

Local repo contains the changes in the
files

5a Stage/commit the xml file in the
Form folder

 –
Only the modified file for the CAD form is
in Git

5b Confirm change in Git Git contains changes as non-staged files

6a Run ContinuousIntegration No error

6b Confirm change in Innovator
instance

Forms in instance still have the new field

7 Run BuildAndDeploy No error

8 Confirm the changes in the new
Innovator instance

Yes No
CAD: ok
Document: like before the change

ACE 2024

34

Exporting CAD and Document Forms Before Changes
Export the changes to your export folder for comparison later with your exported changes.

Try It … Export CAD and Document Forms Before Changes

1. Enter the server URL.

2. Click on the Login button to open the Login browser dialog.

3. Select the database from the drop-down, enter your admin username and password, then click
the Login button.

4. Set the destination of the export, you will find the exported files in that directory.

5. Refresh packages (click on the three dotted = ellipsis button).

6. Locate the Form package group in the package definition com.aras.innovator.solution.PLM and
click on the text (if you check the box then all contents are selected in right box).

7. Select the CAD and Document forms.

8. Click the Export button.

Note: You will be asked if you want to create a new directory or if you want to overwrite,
respectively. Simply accept the option to create the new directory.

Try It … Confirm results

1. Navigate to the created export folder, e.g., C:\ArasProjects\project1\localExports\Export1,
review the contents of the PLM folder and open the manifest file created by the Export Utility.

2. Navigate to your Export Utility log folder, e.g., C:\~\PackageImportExportUtilities\Export\log
and review the Export log.

 Packaging and Continuous Integration

35

Modifying CAD and Document Forms
The changes shown in this example are the addition of an unused property into the forms for both
ItemTypes.

Try It … Modify CAD Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the CAD Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_on.

5. Place the property on the form, change the label to Created on and save the form.

Try It … Modify Document Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the Document Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_on.

5. Place the property on the form, change the label to Created on and save the form.

ACE 2024

36

Exporting CAD and Document Forms After Changes
Export your changes to the new destination folder C:\ArasProjects\project1\localExports\FormExport2,
marking the two Form items CAD and Document.

Try It … Export CAD and Document Forms After Changes

1. Open the Export Utility in Administrator mode.

2. Populate the different fields as before and set the Export folder as
C:\ArasProjects\project1\localExports\FormExport2.

3. Review the Export Utility log and the manifest file.

 Packaging and Continuous Integration

37

Reviewing Form Differences With KDiff3
As a good exercise, analyze the differences between the export data before and after changes. We want
to avoid situations where additional changes (currently not relevant) are present before we make a
commit.

Try It … Review Differences in the Result Files for the CAD Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the CAD Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\CAD.xml as the A
(Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\CAD.xml as the B
file.

4. Observe the differences: We find the definition of one additional field with the name property
created_on in the exported xml-file after the change – that reflects exactly what we changed
from the UI.

Try It … Review Differences in the Result Files for the Document Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the Document
Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\Document.xml as
the A (Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\Document.xml as
the B file.

4. Observe the differences: there are no differences. We find the definition of one additional field
with the name property created_on in the exported xml-file after the change – that reflects
exactly what we changed from the UI.

ACE 2024

38

Reviewing the Manifest File
The Export Utility creates a manifest file that includes the exported package, i.e., PLM in our use case.
The contents of the imports.mf file are already part of the current manifest file in the repository AML-
package folder.

Try It … Compare Manifest Files in Export and Repo Folders

1. Open the first imports.mf file from C:\ArasProjects\project1\localExports\FormExport2 (= result
of export).

2. Open second imports.mf file from C:\ArasProjects\project1\LocalRepo\AML-packages (= used
for future builds).

3. Compare the two files: Both files will be identical in the PLM section (you may also use Kdiff3 to
compare files).

Note: the Export Utility simplifies the name of the package during the creation of folder names. Notice
that the Export Utility only uses the last element of the package name PLM as folder name.

 Packaging and Continuous Integration

39

Copying the Export Utility’s Output to the Local Repo
When you have the export results, you can copy the top common folder and paste it in the repo local
working directory and accept file replacement warnings. This approach allows you to avoid forgetting
files.

Try It … Copy the Export Utility’s Output to the Local Repo

1. Copy and paste the folder C:\ArasProjects\project1\localExports\FormExport2\PLM onto the
corresponding folder in the local repo under AML-packages.

2. Accept the replacement and verify the contents of the ~\AML-packages\PLM\Import\Form
folder: the CAD.xml and Document.xml files should be the only updated files.

ACE 2024

40

Staging and Committing the Modified CAD.xml File
To add the modified file CAD.xml to the repository, we stage it by using the commands git add
…/CAD.xml and commit - m “commit message”.

We do not stage the modified file Document.xml to see the different behavior.

Try It … Stage and Commit the Modified CAD.xml File

1. Open Git Bash and navigate to C:\ArasProjects\project1\LocalRepo\AML-packages.

2. Verify the status of the Git repository by running git status.
Result: you will see the two files CAD.xml and Document.xml as modified files but not staged
files yet.

3. Stage the file CAD.xml: git add PLM/Import/Form/CAD.xml.

4. Verify now the new status of the Git repository by running git status.
Result: you will see only the file Document.xml as not staged file; the file CAD.xml is displayed
as a modified and staged file.

5. Commit the CAD.xml file using the command git commit -m “Changed the CAD Form”.

Note: You may also see the status of the Git repository before executing any steps within Git Extensions.

 Packaging and Continuous Integration

41

Confirming Your Changes in Git Extensions
You may use Git Extensions to verify the status of your repo before and after staging and committing the
changes.

Try It … Confirm Your Changes in Git Extensions

1. Open Git Extensions from the right-click context menu of your repository.

2. Click on Commit (2) in the toolbar to open the Commit … dialog: you will see 2 non-staged files
(Before Staging/Committing screenshot).

3. After you have staged and committed the CAD.xml file (done in previous step), go to the
Working Directory in Git Extensions.

4. Click on the Diff tab and select the Document.xml file.

5. Notice that it displays an additional Item block with the name property created_on (After
Staging/Committing screenshot).

ACE 2024

42

Continuous Integration Script
CI Defined

• An automated utility script is provided as part of each customer repository to perform final
validation and verification that a build is successful.

• This script can be run by developers or system integrators manually to determine if the build
passes or fails. Automation tools are also available to provide scheduled executions of this script
on a dedicated CI server.

CI Steps

• The CI script runs all the integration tests that have been created for a project by installing and
building a new instance of Aras Innovator, applying the project code and configuration, and
making sure all tests are successful.

• A report indicates Success or Failure with a running log if issues need to be resolved. The script
then deletes the running instance (and database).

 Packaging and Continuous Integration

43

Running Continuous Integration Script
Run the ContinuousIntegration.ps1 script as administrator to ensure that your repository is still in a valid
working state. You should receive a green success message.

Try It … Run Continuous Integration Script

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

2. Run script: .\ContinuousIntegration.ps1.

3. Verify the result from the admin PowerShell window and by opening the log, i.e.,
ContinuousIntegration.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage,
DeployStage, and InstanceTestsStage, which contain log details for the 3 stages of the script.

ACE 2024

44

Confirming Changes in Aras Innovator Before Rebuilding
Verify that the current instance is using the modified forms for CAD and Document items. In the next
steps we will delete the current Innovator instance and create a new one.

Try It … Confirm Changes in Aras Innovator Before Rebuilding

1. Go to your Innovator client in a browser.

2. Create a CAD document and notice the new field named Created On.

3. Create a document and notice the new field named Created On.

 Packaging and Continuous Integration

45

Rebuilding Aras Innovator Instance
Rebuild your Aras Innovator instance using the script BuildAndDeploy.ps1. You should receive a green
success message.

In the output you will find the URL of the new Aras Innovator instance.

Try It … Rebuild Aras Innovator

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

2. Run script: .\BuildAndDeploy.ps1.

3. Verify the result from the admin PowerShell window and by opening the log, i.e.,
BuildAndDeploy.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage, and
DeployStage, which contain log details for the 2 stages of the script.

ACE 2024

46

Reviewing CAD and Document Forms After Rebuilding
The form for the CAD is like it was before the rebuild, meaning, it contains our intended change. On the
other hand, the form for the document fell back to the initial state without a field for created_on.

The example for the document form illustrates what happens if you have not staged and committed
your changes before the next rebuild.

If you have kept your exports in separate folders, you can recover them.

Running ContinuousIntegration.ps1 beforehand will not and cannot indicate the issue – it simply does
not know what you forgot in the staging.

Avoid this situation by staging or committing changes before building, i.e., before running
BuildAndDeploy.ps1.

Try It … Review CAD and Document Forms After Rebuilding

1. Access the newly rebuilt Innovator instance.

2. Open the forms for the Document and the CAD document and notice any new changes.

 Packaging and Continuous Integration

47

Thank you for participating in this brief introduction to Aras DevOps CI/CD processes for Aras Innovator.

For more information, please go to the following web sites and pages:

• https://www.aras.com/en/why-aras/aras-enterprise-saas

• https://www.aras.com/community/subscriber-portal/training/w/development-best-
practices/1003/aras-devops-training

• https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevO
ps%20-%20User%20Guide.pdf

• https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/Start
Page.htm

• https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20
PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-
%20Administrator%20Guide.pdf

https://www.aras.com/en/why-aras/aras-enterprise-saas
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf

	Packaging and Continuous Integration
	Overview
	Objectives
	Aras DevOps High-Level View
	Pre-configured Continuous Integration template
	Continuous Delivery
	Standard Development Environment (SDE)

	Packaging in Aras Innovator
	Understanding Packaging
	Try It … Explore existing Package Definitions

	Solution Package Overview
	Package Definition
	Package Groups
	Package Elements

	Understanding Packaging and Instance Specific Changes
	Guidelines for AML Packages
	Scope of Next Activities
	Work in LDE
	Work in SDE

	Exporting a Package
	Try It … Open the Export Utility

	Use Case #1: Reviewing the Sample Project
	Project Naming Conventions and Starting Branch
	Establish Naming Conventions

	Preparing the Local Development Environment
	Recommendations

	Creating a Package
	Try it … Create a Package

	Defining a New Item Type: atxx Design Request
	Try it … Create a Sequence
	Try it … Create the Design Request ItemType
	Try it … Create Custom Properties for the Design Request
	Try it … Update the New Design Request Form

	Creating and Saving a Method
	Try It … Create and Save a Method

	Subscribing Method to Server Events
	Try It … Subscribe Method to Server Events

	Adding Elements to Export Package
	Try it … Add Elements to Export Package

	Adding New ItemType to TOC
	Try it … Add New ItemType to TOC

	Exporting Contents of New Package Definition
	Try It … Export Contents of New Package Definition

	Placing Export Package Contents Into Local Repository
	Try It … Place Export Package Contents Into Local Repository

	Staging and Committing Changes
	Try It … Stage and Commit Changes

	Executing AML Before/After Package Import Scripts
	Executing ContinuousIntegration Pipeline to Validate Build
	Try It … Execute ContinuousIntegration Pipeline to Validate Build

	Executing BuildAndDeploy Pipeline to Confirm Build
	Try It … Execute BuildAndDeploy Pipeline to Confirm Build

	Next Steps
	Customizing Aras Applications
	Creating and Managing a New Module
	Use Case #2: CAD Form and Document Form Changes
	Exporting CAD and Document Forms Before Changes
	Try It … Export CAD and Document Forms Before Changes
	Try It … Confirm results

	Modifying CAD and Document Forms
	Try It … Modify CAD Form
	Try It … Modify Document Form

	Exporting CAD and Document Forms After Changes
	Try It … Export CAD and Document Forms After Changes

	Reviewing Form Differences With KDiff3
	Try It … Review Differences in the Result Files for the CAD Form
	Try It … Review Differences in the Result Files for the Document Form

	Reviewing the Manifest File
	Try It … Compare Manifest Files in Export and Repo Folders

	Copying the Export Utility’s Output to the Local Repo
	Try It … Copy the Export Utility’s Output to the Local Repo

	Staging and Committing the Modified CAD.xml File
	Try It … Stage and Commit the Modified CAD.xml File

	Confirming Your Changes in Git Extensions
	Try It … Confirm Your Changes in Git Extensions

	Continuous Integration Script
	CI Defined
	CI Steps

	Running Continuous Integration Script
	Try It … Run Continuous Integration Script

	Confirming Changes in Aras Innovator Before Rebuilding
	Try It … Confirm Changes in Aras Innovator Before Rebuilding

	Rebuilding Aras Innovator Instance
	Try It … Rebuild Aras Innovator

	Reviewing CAD and Document Forms After Rebuilding
	Try It … Review CAD and Document Forms After Rebuilding

