STUDENT TRAINING GUIDE

Aras DevOps
Packaging and Continuous Integration

ACE 2024

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

aras

Packaging and Continuous Integration

Overview

In this session, you will learn the basic guidelines for packaging items for Aras Innovator and how to use
the packages within Aras DevOps Continuous Integration processes.

You will also build a simple project based on a use case, add all created items into the project package,
export the project package into the customer repository, and commit the changes using Git (Source
Control Management), after validation with the Continuouslintegration pipeline.

Finally, you will rebuild your local Innovator instance with the project items with the BuildAndDeploy
pipeline.

Objectives

Understand Aras DevOps (AD)

Understand packaging in Aras Innovator

Differentiate between packaged changes and instance specific changes

Understand packaging in Aras DevOps

Export changes for Aras DevOps CI/CD (Continuous Integration/Continuous Delivery) control
Understand the impact of changes in working directory vs staged or committed changes
Build a sample project

Package and export sample project

Validate and commit sample project into local repository

Rebuild local innovator instance with BuildAndDeploy pipeline

ACE 2024

Aras DevOps High-Level View

« Aras Cloud environment for Continuous Integration (Cl)
= Set up and maintained by Aras Global Cloud Services (GCS)

Aras DevOps

» Includes Standard Development Environment (SDE)

= Azure DevOps: Environment to commit, build and test Aras

Standard Development Environment (SDE) customizations

= QA Build & Systems Integration Testing (SIT) Environments

= Tools, code template, and processes

Production

= = =]
Test Automation

Framework (TAF) = Includes Test Automation Framework (TAF)

Build

= Aras Innovator specific APls layered on top of industry
standard testing frameworks (NUnit, Selenium)

« Supports several configurations of Continuous Delivery (CD)

,karas o

Aras DevOps High-Level View
Pre-configured Continuous Integration template

Provides GIT for Source Control Management leveraging a Pull Request (PR) process.
Provides Azure Pipelines for executing automated tests, code scans, etc.

Provides Artifactory for storing all build artifacts to allow for reuse in deploying to multiple
environments.

Provides an SIT server to allow for end user/QA validation and review of work.
Provides TAF license so your teams can build robust automated tests.
Dedicated team to help ensure the pipeline is operational.

Continuous Delivery

Aras DevOps provides the full Cl experience. Continuous Delivery is reviewed on a project-by-
project basis to meet customer needs.

Aras Enterprise offering provides the full CI/CD offering for managing deployments as well as
continuous integration.

Full Continuous Delivery pipeline available instantly to support your DevOps Journey

Continue to benefit as Aras evolves and introduces new enhancements into the Aras DevOps
offerings.

No additional internal hardware/maintenance required for supporting the pipeline.
Uses the same tools and process leveraged by Aras Solution Delivery.

Can be leveraged by downstream teams (e.g., support and upgrades) to help improve overall
customer satisfaction.

Includes TAF license for helping build/extend your test automation.

Packaging and Continuous Integration

Standard Development Environment (SDE)

An environment with tools and processes that enables you to adopt industry-common CI/CD
practices.

Standard Tools and Software — all tools and software (required and optional) and its integrated
configuration that we are using locally for our goals (Git, Visual Studio, MS SQL and so on)

Aras Tools — all proprietary software and solutions that we are using (Aras VS Plugin,
Import/Export, TAF, ...)

Services — hosted services and applications accessible via network/Internet (Azure DevOps —
base tool for the SDE CI/CD and other basic concepts)

Industry Practices — how we are using everything listed above (Code Guidelines, Industry Best
Practices: Cl/CD, DevOps)

Aras Pipelines — formal definition of start to end and iterative processes with roles, activities and
other detentions that helps to reach local and global goals.

ACE 2024

Packaging in Aras Innovator

= The Aras Innovator architecture is designed for
customization of standard Aras Solutions/Apps
and for building your own custom Solutions.

= Solution Packaging is the mechanism that
allows Solution Developers to register
customizations in Packages so they can be
extracted and transported to other Aras Innovator
installations. For example, from a developer
environment to the production system.

N v/
\—l/

H

w[
o D)
[L
|
(0 [7))
(N

= The first step in moving a solution is to create a
Package Definition and include the required
items (package elements).

,A%.'aras

Packaging in Aras Innovator

Aras Innovator is a low-code platform, which means users can add truly little code to achieve
outstanding results rapidly. It also means user can use configuration to express business rules, such as a
life cycle map.

When working directly with an instance of Aras Innovator, these changes are stored anonymously within
and can reference any other items already in the system and vice versa.

Making such changes directly in a business-critical system serving users is not good practice. As
mentioned earlier, a central focus of DevOps is to instill the discipline of well-managed solution
configurations, including change management and implementation.

In larger solution development engagements exported packages and their elements can be put under
version control and can be input to an automated build process (Cl / CD).

The following sections explain how to export these changes into named packages, define explicit
dependencies, and commit the changes for proper configuration and version control.

This way, it is ensured that the build system can replicate the swiftly accomplished interactive tasks -
thus introducing configuration and version control discipline to the low-code product.

The first step in this procedure is defining a package by a Package Definition item, which then can be
exported and re-imported to the central source control system for further usage in the builds.

Packaging and Continuous Integration

,A}..'aras

= [tems are organized into packages.

= A package element (identified by its GUID) cannot

= Data created without a package are instance
specific. In order, to export and reimport such
data a package assignment is required. This
allows the build process to create an instance =
with information from source code repositories.

Understanding Packaging

m arasiynovaror

. - Q PackageDefiniti
be added to multiple packages! ® contents ¢ =
. . o PackageDefinitions ~ 7

= Align folder names with the packages they v Admimstiaton

contain for ease of identification. 7 Aot = SGb @

~ Configuration

= When creating items, List, properties etc. in an S = | name

Aras Innovator instance, packaging is not £ Client Present.. .

required. However, when exporting them for use 3 Commands

in Cl/CD, packaging is mandatory. (L] Dashboards

=}

= Database Upgr

"o :

Derived Relatio
PackageDefini

Query Definitio

o]

5 Tree Grid Views

Understanding Packaging

Conceptually each package is a collection of item IDs. Additionally certain ltemTypes were introduced to
support package functionality.

A newly installed Aras Innovator database contains Package Definitions of two types:

Aras Core Packages — These packages are used to define the basic structure of every Aras
Innovator database, regardless of what solutions are used in the database. They are created and
managed by Aras for the Core system.

Do not modify, because any modifications (addition, change of value, deletion) will put your
Aras Innovator installation functionality at risk.

Aras Solution Packages — These packages define the elements that comprise the definition and
functional rules of different Solutions data models. They are created and managed by Aras for a
dedicated Solution. The names typically begin with com.aras.innovator.solution. Modify with
care!

. Explore existing Package Definitions

Navigate to Administration > Configuration > PackageDefinitions.
Run a blank search.

Open some of the Package Definitions, and note their structure, for example
com.aras.innovator.core or com.aras.innovator.solution.PLM.

A package name must be unique within a database of an Aras installation, and it can be any text
up to 64 characters (excluding special characters. spaces are allowed).

Package names should be globally unique, at least within your Aras ecosystem, and should

follow a naming convention. We recommend using a “.” notation for names. A good example for
this would be to follow the java package naming conventions.

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

ACE 2024

e Standard Aras packages from Applications and Core modules already follow a convention. The
namespaces defined in this convention are reserved for Aras internal packages and shall not be
applied outside of Aras!

Packaging and Continuous Integration

Solution Package Overview

Package
Definition

Package Groups

O & & B

ltemType Workflow LifeCycle Relationship Permission Form ===

Type
Design Design Design Design Design Design
Request Request Request Request Request Request
WorkFlow LifeCycle Document forms

Package Elements

,«{‘A;.'aras

Solution Package Overview

The components of a Solution Package are outlined in this diagram. The number of Package Groups and
Package Elements are dependent on an Aras Innovator release and can grow with each new release.

Package Definition
A Package Definition is a collection of Package Groups that contain Package Elements. For simple
solutions you should be able to define a single package and add all relevant elements to it.

With larger solutions there can be cross dependencies between elements where one element of the
same group may need to be created before the other. Or your solution is modular and has optional
components. In this case your solution should be broken down into multiple packages.

Package Definitions (in short, Packages) are exported from an Aras Innovator system they are defined in
using the Packaging Utilities.
Package Groups

You do not need to create these. They are created automatically when adding an Element to a Package
Definition. Names of Package Groups are built-in in the Modeling Engine. (like: Method, ItemType, List,
RelationshipType, etc.)

Package Elements

In the packaging process Package Elements are added to a Package Definition. As an Aras Innovator
Administrator, you will have buttons or menu actions “Add to Package Definition” to add selected
elements to a package.

ACE 2024

Understanding Packaging and Instance Specific Changes

| Packaged Items |

I Instance specific ltems |

Package Definition 123 Package Definition 123
4 4
i i
A B A
| Export | | Import I
C D D
Aras Innovator

|:| Name

Axml

D.xml

Developing Instance = >||mpcm , Fcrml Builds from the Repo

,A}..'aras

Understanding Packaging and Instance Specific Changes

Aras Innovator is very flexible in enabling users to do rapid application development and proofing out
concepts.

This flexibility requires management to satisfy good practices developed in the industry to manage
configuration of enterprise systems. ITIL (Information Technology Infrastructure Library) has such
controls in the form of practices in the latest versions. SOC 2 (System and Organization Controls 2)
certification also requires strong configuration (change) management.

For such reasons, administrators must adopt the discipline of extracting such changes and managing
them in DevOps. If for no other reason than to ensure the next release does not wipe out their changes.

When changes are properly change-controlled then the corresponding solution configuration can be
reproduced with assurance.

The diagram summarizes the impact of anonymous items in an instance and the effect of defining,
exporting, and providing packages to the build system.

On the left, the user has four items (A, B, C, and D). A, and D represent new or modified items which are
properly packaged, exported, copied, and assigned to the change control system Git. B and C represent
Innovator instance specific items which are not intended for use in the next build and therefore
consequently not packaged.

The build system then produces the instance on the right. It is important to observe that the Aras
Innovator instance on the right excludes items B and C, highlighting the capability to dictate what
DevOps builds. This capacity to specify what DevOps creates is a foundational element of utilizing
DevOps.

Note: The visualization is reduced to changed items only.

Packaging and Continuous Integration

Guidelines for AML Packages
= Packages should be based on capabilities (feature sets) being developed
(not on time-based release schedules, i.e., sprints or phases)

= Keep items in their original AML package: That is avoid moving items from Standard Aras
Packages into custom packages

= Avoid modifications of Core packages
= Keep the package structure created by the Export tool
= A package element (identified by its GUID) cannot be added to multiple packages!

= Dependencies between packages
= You specify these package references as part of the Package Definition
= Avoid circular references in package dependencies

= =

Design Request PLM Solution Core

,«{‘A;.'aras

Guidelines for AML Packages

Please do not modify package structure created by Import/Export tools. It might cause compatibilities
issues for the new tools provided by Aras and issues for the support and future upgrades. Also, it will
cause baselines synchronization issues.

When considering rules for AML Packages let us differentiate three different types of AML Packages:

e Custom Packages
Packages you create and manage, containing items that you created and that you manage.

e Aras Solution Packages
Packages created and managed by Aras for a dedicated Solution. The names typically begin with
com.aras.innovator.solution. Modify with care!

e Aras Core Packages

Packages created and managed by Aras for the Core system.
Do not modify, because any modifications (addition, change of value, deletion) put your Aras
Innovator installation functionality at risk.

The rules are meant to support you in keeping the functionality of your current Aras Innovator
instance as well as reducing the risk of future collisions between changes you made, and
changes made by Aras. Ignoring the rules can lead to future issues with support, upgrade, and
baseline synchronization.

The packaging guidelines include keeping items in their original packages. Therefore, in our use case, we
will change the CAD and Document forms within the Aras “com.aras.innovator.solution.PLM” solution
package, which already exists in the baseline.

If you have a set of common items leveraged by multiple applications, which will force a circular
dependency, it should be part of a Common Utility package loaded first.

Examples: Lists, Method, Conversion Rules, Permissions, ldentities, some ItemTypes, etc., that could be
used across multiple applications/packages.

ACE 2024

,«{‘A;.'aras

Scope of Next Activities

In the following steps, we will act as a developer, who has been assigned a story to be
implemented, and who will perform all local activities

Dev

1
. Working . : i Remote Personal Remote Team
Devel .
eveloper Implementation Directory Commit Repository ! Push Repository (Fork) Repository
(Local) |
j p— : —

El e | e e
? ? .
L] . !

LDE SDE

Scope of Next Activities

In the next steps we will implement a small User Story and learn how to prepare changes to be
committed. We will create commits with the use-case implementation in the local repository.

Work in LDE

The project development work for each developer begins in their Local Development
Environment (LDE), after they ensured that the trainingxx branch has been checked out (this
branch was created in an earlier step from the Team’s repository corresponding branch).

Once each developer has completed their local work, they commit their user story contribution
to their local repository and ensure that it is validated with the Continuousintegration and/or
BuildAndDeploy pipelines.

Each developer performs a git fetch/rebase operation from the appropriate Team’s repository
branch to ensure that they are fully synchronized. Any conflict that occurs because of this
operation should be fixed before taking the next steps.

Work in SDE

Each developer performs a git push operation to their personal fork’s trainingxx branch.

In Azure DevOps, each developer creates an appropriate Pull Request (PR) to present their work
to the review team.

If the developer’s contribution is accepted it is merged into the Team’s repository trainingxx
branch.

Note: When working on one feature at a time then only the “development” branch is necessary.

10

Packaging and Continuous Integration

Exporting a Package

= The Export utility may be downloaded from: https://www.aras.com/en/support/downloads or obtained from the Aras Innovator
CD image.

= It allows you to export DB packages and their elements into the Local Development Environment (LDE) file system.
[export - x

B o« 490
Evot Setgs B2 Mo

Innavator Server
Server [t

v | ArasProjects ~ O Name

Export Optons v [projectl L cADxml

ExpotTo [CikrasProjectiproject acalExports Export] Levet [3]

baselines & Document.xml

Expont Referenced iten u—
Referances 1o Unknown Packages: " Remave Silenty * Remove wih Viaming " DontRemore |:> v LocalExports
Language rescurces ~l '

Export longuoges: [fvone =

v | FormExport1 .
v B PM AML Files
v Import

Form

Innovator File System
Database

,A‘{%,'aras

Exporting a Package

Once the Package Definition is complete, the package can be exported using the Export utility. This
utility is a separate executable named export.exe that is available on the Aras Innovator CD image, or
that may be downloaded from https://www.aras.com/en/support/downloads. It is important to select
the Export utility belonging to the version and service pack of the installation from which you do the
export.

The Export utility allows you to select a Package Definition from the database and create a package
folder structure in the file system. Each Package Group (IltemType, Form, etc.) becomes a separate
subfolder in the file. Within each subfolder, each exported Item is represented as an AML file with the
same name as the exported Item.

In the example above, two Form definitions are exported and contained in the Form subdirectory. Note
the remaining subfolder names — each represents a kind of exported Item from the database.
Try It ... Open the Export Utility

1. Use Windows File Explorer and navigate to the place where the export.exe file has been stored.

For example: C:\Users\devops\Desktop\Apps\PackagelmportExportUtilities_R27\
PackagelmportExportUtilities (or as directed by instructor).

2. Double click the export.exe file to run the Export Utility.
In the Server field, enter the URL of the Aras Innovator Server (as provided by instructor).

4. Enter a valid administrator username and password in the respective fields of the browser that
opens. In Aras classroom setting, use the Username of admin with the Password of innovator.

5. Click the Login button.

11

https://www.aras.com/en/support/downloads

ACE 2024

Use Case #1: Reviewing the Sample Project

Project goal
= Create a simple Design Request
= Collect user data based on supplied use case
Sprint 1
= Story
= User Story: Add New Design Request ATxx
= Parent Feature: Design Request Management ATxx
« Grand-Parent Epic: Change Management ATxx
= Development Requirements

Design Request
» Create ltemType

+ Create Properties Created By Title

= Configure Form |

= Create Server Event Method Created On Completion Date Patent?
| = [10/18/2017 ::

,A}..'aras

Use Case #1: Reviewing the Sample Project

To demonstrate how the development process works, a small project has been designed, and this will
allow users to collect information in a Design Request item.

The first sprint should create the following:

e |temType: Design Request
e Properties:
e Request Number (Sequence)
Title (String)
e Completion Date (Date)

e Patent (Boolean)
e Form (Display properties for data entry)
e Method triggered by a Server Event (If Patent=1 the Completion Date is Required)

Requirement: The Design Request item should display the four properties on the form (custom and
system properties). If the user checks the patent checkbox (Boolean) the completion date must be filled

in to save the item.

The User Story has been created in a previous exercise, with the following hierarchy:

e User Story: Add New Design Request ATxx (xx: as provided by instructor)
e Parent Feature: Design Request Management ATxx
e Grand-Parent Epic: Change Management ATxx

12

Packaging and Continuous Integration

Project Naming Conventions and Starting Branch

=ltem Types: atxx Design Request

= Forms: atxx Design Request

= Methods: atxx Design Request Validate

= Properties: atxx_*

= Packages: atxx.training.design_management
= Assigned Team Repo Branch: trainingxx

= Sample Project flow
= Development will begin in trainingxx branch in individual developer’s local environment
= Developer will then fetch/rebase from team trainingxx branch, and push project work to
fork trainingxx branch
= With appropriate PR the developer’s contribution will flow into team trainingxx branch

,A%aras

Project Naming Conventions and Starting Branch

For the first sample, project development begins in the feature branch named trainingxx. (xx: as
provided by instructor).

This branch was created in the customer repository in an earlier exercise. Make sure that the trainingxx

branch is checked out before continuing.

Establish Naming Conventions

Naming conventions, including naming of the packages, is strongly recommended. Review Aras
guidelines for naming conventions and adopt them as appropriate.

In our project, we will use the affix atxx (atxx: as provided by instructor), as either a prefix or a suffix.

13

ACE 2024

Preparing the Local Development Environment

Before you implement anything, within a real-life project, with the intention to contribute to the
team repository, you should prepare your local environment
= Prepare clean instance of Innovator (without your changes) by executing BuildAndDeploy.ps1

« This will allow you to get the latest changes in your instance based on the latest approved project baseline
= Before executing BuildAndDeploy.ps1 ensure that there are no unsaved changes in your existing instance as they will be
overridden
= Fetch latest changes from the remote team repo (fetch and rebase)
= It is strongly recommended so that you work with the latest state of implementation avoiding potential conflicts, and do
not miss the latest implemented logic
« It will save time for the overall project by resolving conflicts/errors as soon as they are detected in your local environment

= Refer to Local Development Environment Setup in subscriber portal for more details

,A%-.'aras

Preparing the Local Development Environment

You may go back to unit “Setting Up a Local Development Environment” to prepare your local
environment for development.
Recommendations
e Local Development Environment: should be prepared from the latest approved project baseline
to ensure all the latest changes are included.
e Fetch and rebase
e Should be performed multiple times throughout your development work, within the
duration of the sprint, to ensure you have the latest changes that have been accepted in the
team branch you are working on.
e Helps minimize the number of conflicts/errors in your fork, and in the team repo; this also
helps shortening the team’s code review process.

Note: refer to Local Development Environment Setup in subscriber portal for more details.

14

https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1004/local-development-environment-setup

Packaging and Continuous Integration

Creating a Package
1. Pin up the Navigation Bar Ed arasiiovaror a
(TOC — Table of Contents)

2. Expand the Administration group

w/ PackageDefinitions + 7

@ contents o @ 8 Packsgevetnn. ¥

I Present
3 commands

Dashboards

3. Expand the Configuration group

4. Click on the search icon at the right of the
PackageDefinitions item

5. Click on the New PackageDefinition icon

,ﬁ;aras

Creating a Package

Follow the steps below to create a new package named atxx.training.design_management (atxx: as
provided by instructor).

Try it ... Create a Package

1. In Git Bash or Git Extensions ensure the trainingxx branch is checked out in the Local
Development Environment.

In a browser window log in to your Innovator client.

3. Navigate to Administration > Configuration > PackageDefinitions and click the New
PackageDefinition button.
4. Enter atxx.training.design_management for the PackageDefinition Name and click Done.

15

ACE 2024

Defining a New ltemType: atxx Design Request
23 at00_DesignRe.. x |© roo.oesnee ¢
© at00_DesignRequest
23 at00_DesignRequestSequence v [= B3 oiom
- S
s .
Sequence : ssss
Name Lorge loom
al00_DesignRequestSequence o
Prefix Initial Value Current Value Suffix
DR-] 0
n;adwnn F‘;dTw \:;ep P . " ..
a e L3
..... ' " o [[[[[[
. ELCLE R o gsce
g oggoss
mplstion D - ([d O O 0D o o
B O o0 o]
{ Stan e 0 0 0 @
0D OO0 @ 3
,A}..'aras
Defining a New Item Type: atxx Design Request

Follow the steps below to create a new ItemType named atxx_DesignRequest (atxx: as provided by
instructor), with the following details:

A new Sequence: atxx_DesignRequestSequence that will be used in a new property to number
the design requests (DR-0010, DR-0020, etc.)

New Properties to collect data about the request: atxx_title (Title), atxx_completion_date
(Completion Date), atxx_patent (Patent), and atxx_request_number (Request Number)

Permissions: Can Add (World) and Default Access

A new Method: atxx_DesignRequestValidate for the OnBeforeAdd and OnBeforeUpdate Server
Events

Assignment to the root of the TOC for quick access

Try it ... Create a Sequence

1.
2.
3.

4,

16

Navigate to Administration > Sequences and create a new Sequence.
Name the sequence atxx_DesignRequestSequence.
Provide the following sequence values:

Prefix DR-
Initial Value 0
Current Value 0
Suffix

Pad With

Pad To

Step 10

Click the Done button to save the atxx_DesignRequestSequence.

Packaging and Continuous Integration

Try it ... Create the Design Request ItemType
1. Navigate to Administration > ItemTypes and create a new IltemType.
2. Enter or select the following values on the ItemType Form:

Name atxx_DesignRequest

History Template

Default

Singular Label

ATxx Design Request

Plural Label

ATxx Design Requests

Show Parameters Tab

When Populated

Default Structure View

Tabs Off

Checked

Small/Large Icons Choose from provided image list
Note: leave all other settings to default values

Versionable

3. Click the Save button to save your new Design Request ItemType.

Assign the following permissions by clicking on each Relationship tab and adding a new row
(Add button):

Relationship Tab
Can Add

Permissions

Name Value
World (Can Add is checked)
Default Access (Is Default is checked)

5. Click the Save button to save your new Design Request ItemType.

Try it ... Create Custom Properties for the Design Request
1. Open the new Design Request ItemType in Edit mode (if necessary).
2. Select the Relationship tab labeled Properties and click the New Property button to add new
properties.

3. Use the table below to provide the Name, Label, Data Type, and additional settings for each
new property for the Design Request ltemType.

Property Name Label Data Type Length | Width | Sort KNO
atxx_title Title String 64 250 20
atxx_completion_date Completion Date Date 120 40
atxx_patent Patent? Boolean 100 30
atxx_request_number Request Number Sequence 100 10 1

Note: KNO is Keyed Name Order
Click the Save button to save your new Design Request ItemType.
5. Expose the following standard properties:

Property Name Label Width | Sort
created_by_id Created by ID 120 50
created_on Created on 120 60
state State 100 70

6. Click the Done button to save your new atxx_DesignRequest ItemType.

17

ACE 2024

Try it ... Update the New Design Request Form
1. Open the new atxx_DesignRequest IltemType.
2. Select the Relationship tab labeled Views, right-click on the atxx_DesignRequest form, and
select Actions > RebuildViewAction from context menus.
Right-click again on the atxx_DesignRequest form and select Open.
Select Edit in the atxx_DesignRequest form , position the custom fields and standard fields as
displayed in image:
> = z z @ m E == | an®| .f:\. Unused Properties ¥
Request Number Title Created by ID
Completion Date D Patent? Created On
5.

Click the Done button to save changes to the new atxx_DesignRequest Form.

Packaging and Continuous Integration

Creating and Saving a Method

= Create a new method as shown

= Ensure new Design Request ltemType properties are correctly added

string completionDate = this.getProperty("atO0_completion_date" string. Empty);
string patent = this.getProperty("at00_patent", "0");

if (string.Equals(patent, "1") && (string.IsNullOrEmpty(completionDate)))

{

return this.getinnovator().newError("Patent requires completion date!");

“\ at00_DesignRequestValidate }
Name atD0_DesignRequestValidate Comment Execution allowed to World [lw}

S 4| [wse @ O (D@ & ?]

1 string completionDate = this.getProperty("at@@_completion_date",string.Empty);
2 string patent = this.getProperty(“at@@_patent”, "0");

3 if (string.Equals(patent, "1") && (string.IsNullOrEmpty(completionDate)))
a-{

5 return this.getInnovator().newError("Patent requires completicn date!™);
6

7

return this;

A%_;aras

Creating and Saving a Method

Follow the steps below to create a new Method named atxx_DesignRequestValidate (atxx: as provided
by instructor).

Try It ... Create and Save a Method
1. Navigate to Administration > Methods and click the Create New Method button.
2. Enter atxx_DesignRequestValidate for the Name.
3. Select Server-side and C# for the method basic properties.
4

Enter the following code:

string completionDate = this.getProperty("at00 completiondate",string.Empty);
string patent = this.getProperty("at00 patent", "0");
if (string.Equals (patent, "1") && (string.IsNullOrEmpty (completionDate)))
{

return this.getInnovator () .newError ("Patent requires completion date!");
}

return this;
5. Ensure the Execution allowed to field is set to World.
6. Click the Done button to save the new method.

19

ACE 2024

Subscribing Method to Server Events

= Open atxx_DesignRequest ltemType

= Subscribe previously created method to onBeforeAdd and onBeforeUpdate server events as shown

O at00_DesignRequest 1

<
oo | IXMEER & © kB

Properties RelationshipTypes Views Server Events Actions Life Cycles Workflows ClientEvents CanAdd Permissions Reports ;E

“A Methods ~ 77

B © Q €@ Hidden v | @- E- &

= Name t 3 Method T... | Ver execution_allowed_to [...] Template [...] Comments Event 1 Sort Order $ 2 Event Version
at00_DesignRequestValidate CSharp 1 World

onBeforeAdd 128 | Version 1

at00_DesignRequestValidate Csharp 1 World onBeforeUpdate 256 | Version 1

A%_;aras

Subscribing Method to Server Events

Follow the steps below to subscribe the newly method to the OnBeforeAdd and OnBeforeUpdate to

ensure newly created or existing Design Requests cannot be saved without a Completion Date if the
Patent? checkbox is selected.

Try It ... Subscribe Method to Server Events

1. Navigate to Administration > ItemTypes and open the atxx_DesignRequest ItemType in Edit
mode.

2. Assign the atxx_DesignRequestValidate method to the OnBeforeAdd and OnBeforeUpdate
Server Events.

3. Click the Done button to save changes to the new Design Request ItemType.

20

Packaging and Continuous Integration

Add project elements to package atxx.training.design_management
= [temType O itemTypes v~ 77
[Sroe]| [oomts v | @~ | (@~ |2~ || [0
= Sequence :
= || Namet Singular Label Plural Label Version.. | Depend... | Relatio.. | C. | UseSrcA..
» Form [J I L[[[
9 at00_DesignRequest ATOD DesignReq ATOO Design Req O 0O 0O O
= Method
Add selected item(s) to a packa... >
Please select a package from the list
l_— select package 6
select package
2 open create new
Favorite &100.training design_management Add selected item(s) to a packa.. X
comaras defauls. fierepresentations
Cain, COM.Aas.iNNOvVatoraccess.common
£ Promate com.aras.innovator.access.domain
— com.aras innovator access mandatory Please select a package from the list
Wavig com.aras innovator access uservisivilitypolicy 3 =
POSN rrermersrreres G' - [[at00.training design_management n
of Share | Resethem Acosss
RN e et i Crcie jtor.configurablewebservices
— onfi
comaras.nv u
com.aras.innovator.cui_default
,JA aras

Adding Elements to Export Package

Follow the steps below to add the following elements to the atxx.training.design_management export

package:
e ltemType
e Sequence
e Form
e Method

Try it ... Add Elements to Export Package

1. InTOC go to menu Administration > ItemTypes, and at its right click on Search button.
2. Use any search criteria to find your atxx_DesignRequest ItemType.
3. Right-click on your ItemType and select menu Admin > Add to Package Definition from context

menus.
Select the atxx.training.design_management export package and click OK to confirm choice.
Repeat above steps for all elements to be exported.

In the atxx.training.design_management export package, go to each package group to verify its
contents.

21

ACE 2024

Adding New ItemType to TOC

= Open TOC Editor in Administration menu
= Add atxx_DesignRequest ItemType to Design category

= Ensure World Identity can access

s & @ B X1

(1]

O ltemType

HtemType

Contents

> Administration N
at00_DesignRequest =

» Business Logic

> Change Management Icon
Select an image_

> Cloud Services

> Dashboards .

> Data Modeling Label

~ Design ATOO0 Design Requests

£ Parts Access

@ Products World =
@ Products 9

. AT00 Design Requests

,A%.'aras

Adding New ItemType to TOC

Follow the steps below to add the new atxx_DesignRequest ItemType to the root of the TOC Design
category.

Tryit ... Add New ItemType to TOC

22

1. InTOC go to menu Administration > Configuration > TOC Editor.

2. Select the Design category and click on Add ItemType button.

3. Find your atxx_DesignRequest ItemType and ensure World is selected in the Access field.
4. Click the Save button when done.

5. Create a few Design Requests and test to make sure the method logic works correctly:

a. Anerroris returned if one tries to save a new Design Request with a Patent but without a
Completion Date.

b. An erroris returned if one tries to update and save an existing Design Request with a Patent

but without a Completion Date.
6. InTOC go to menu Administration > Configuration > PackageDefinitions.

Find your atxx.training.design_management export package and ensure it contains the
following additional package groups: Presentation Configuration, Command Bar Section, and
Menu Button.

Packaging and Continuous Integration

Exporting Contents of New Package Definition

[#] Expor
30 2
Epot) Seftngs B2 Abou

Innovator Server

- X

1. Provide the Server URL

2. Select DB and provide credentials in Login

[Server Thtipiiiocaihost DESKTOP-5467N2U-ArasSDE Training-training1 1] [toon | 9 d|alog
(BTTe TonmsProisavprojsctiscsiErponsiuCTD) | test [H 3. Provide the destination for export
Export Referenced tems r
[mfmmunkmpmga € RomovwSienty @ RemovewitWaming m]o « C:\ArasProjects\project\localExports\UC10
B) 4. Set additional Export and Reference Options

‘Available for Export
Packages:

5. Set the Language resources (if required)

6. Refresh the list of packages

A%_;aras

7. Expand and select the desired package and
groups to export

resentation Configuration
[Seauence

8. Select the elements to export
9. Start Export

Exporting Contents of New Package Definition

The Package Definition now needs to be exported. It is recommended that you export the package to a
temporary location (e.g., localExports directory) and review the imports.mf manifest file to ensure the
appropriate dependencies have been defined. The local export files in the staging area must then be
copied/merged into the AML-packages folder in the trainingxx branch of the repository.

Trylt..

1.
2.

Notes:

. Export Contents of New Package Definition

Start the Aras Export tool and login to the instance of Aras Innovator with the admin credentials.
Set the Export folder to a staging folder on the developer machine.

Example C:\ArasProjects\Projectl\LocalExport\UC10

Select the Package elements and export to the local folder.

Examine the localExports folder contents to ensure the appropriate folders and AML files have
been created/changed.

Remember that the imports.mf manifest file is updated each time an export is executed in the
localExports directory. You should check this file to make sure the appropriate dependencies
have been configured if necessary.

Because there is only one imports.mf file for the project in the repository AML-packages folder
be careful not to copy over changes from a previous configuration.

23

ACE 2024

= Note folder structure

= Review imports.mf Manifest files

Export Options |
Export To: EC \ArasProjects\projectlilocalExports\UC10
Export Referenced Iltems: v

References to Unknown Packages " Remove Silently

(o C\ArasProjects)project T\localExperts\UC 10\ imports.md - Notepads +

Encoding Longusge Settings Teek: Mscro fum
1= L TR =1 EEE0E

=

S="atOD. training.design " pathe"design managemen

& comrasprey aiflepo\ AML-packages\imperts.mf - otepads «

IEzavzE

B importemt B

,A_;éras

GitExercises
v <t
v | AnsProjects Pk
baselines
GitExercises
TocolExports
v ject]
pree v | localRepo
baselines gt
v || localExports
~ [l ucw vscode

~

Placing Export Package Contents Into Local Repository

= Copy files to Local Repository AML Packages folder

AmiDeploymentScripts
AML-packages

design_management

Import
ApplicationCore
CommandBarMenuButton

com
CommandBarSection Databaseldentifier
Form ~ design_ management
itemType v [Import

Method CommandBarMenuButton

PresentationConfiguration CommandBarSection

Sequence Form

ItemType

Method
PresentationCanfigurstion
Sequence

Himpotert @) |

Placing Export Package Contents Into Local Repository

It is often necessary, as in this case, to export to a local folder then copy what is necessary into the local

repository.

Try It ... Place Export Package Contents Into Local Repository

1. Copy and paste the folder C:\ArasProjects\project1\localExports\UC10\design_management
into C:\ArasProjects\Project1\LocalRepo\AML-packages.

Accept prompts for replacement if encountered.
3. Copy the contents of the newly created imports.mf file to the existing imports.mf file in the

AML-packages folder.

Ensure that the existing imports.mf file includes the following line:

<package name="at00.training.design management" path="design management\Import" />

24

Packaging and Continuous Integration

Staging and Committing Changes

= Review changes in the working repo

= Stage changes

= Commit your changes with appropriate and informative message

X Committo training1 (C:AArasPrcjecti\project Nocalflepol)

,A_;éras

< > £
] e ==

"= Commit templates + |1 Create branch Options +

00 User Story, crested e Design equest iemoe |

€ Reetolchinges

4 Reser unstaged changes

Committer Developer | <dev @arss.coms b trsining1 ~ teamytraining]] Staged 012 Ln 1 Col 71

Staging and Committing Changes

It is preferable to do atomic commits to better control your work; for this reason, you may want to split
your work, by first committing all configuration work, and then committing all code-related work in
other commits, in case you need to fix some of the code in Visual Studio.

Try It ... Stage and Commit Changes

1.

Navigate to C:\ArasProjects\project1l\LocalRepo\AML-packages\design_management\Import
and note its contents.

Open Git Bash and Git Extensions for the repository ..\project1\LocalRepo.

Verify the status of the repository in Git Bash by running git status.

In Git Extensions, go to the Commit to trainingxx dialog, and stage the different files, i.e.,
atxx_DesignRequest.xml, atxx_DesignRequest.xml, imports.mf, etc. (7 files in total).

Verify now the new status of the repository in Git Bash by running git status.

In Git Extensions, commit the xml files above in the Commit to trainingxx dialog, after addition
of a proper commit message, e.g., “Add Design Request 00 User Story: created new Design
Request ItemType”.

Click OK in Process dialog.

Verify again the new status of the repository in Git Bash by running git status.

25

ACE 2024

Executing AML Before/After Package Import Scripts

= Reserved folder in AMLDeploymentScripts
= 1-BeforeAmlIPackagesimport - Scripts applied before AML import
= 2-AfterAmIPackagesimport - Scripts applied after AML import

= Order Script Execution using prefix number
0001_ApplyChanges.xml

0002 _ApplyDeletions.xml

Ai‘-.'aras

Executing AML Before/After Package Import Scripts
If database modifications need to be made before or after importing the AML-packages, two reserved
folders in the AMLDeploymentScripts folder can be used to supply additional AML statements.
Some use cases for creating custom AML may be:
e Modify or remove metadata that prevents a successful import of AML packages (for example:
server event constraints)
e Resolve circular dependencies in the AML-packages by correcting the Packages configuration in
the DB
e Add or modify any data (not metadata) that is not in the AML packages
Scripts are executed in alphabetic order, so it is recommended to prefix the XML file with a number
which indicates scripts execution order.

26

Packaging and Continuous Integration

Executing Continuousintegration Pipeline to Validate Build

]

« Execute Continuousintegration.ps1
= See the message about success

= Examinate tail of the console output (or
logs, as it is provided in the message)

= Note temporary DB instance created and
used by ClI pipeline

A%'aras

Executing Continuousintegration Pipeline to Validate Build
Validate the Build by executing the Continuousintegration.ps1 pipeline.
Pay attention to the results: the build scripts run an additional set of checks that treat warnings as
errors. As a result, you may see errors when running the Continuousintegration pipeline.
It is recommended to run the Cl pipeline whenever you create or update methods: it is in general a good
DevOps Cl practice to do so as it is fast and helps reduce issues in your project.
Try It ... Execute Continuousintegration Pipeline to Validate Build
1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.
Run script: .\Continuousintegration.ps1.
3. Examine the output of the pipeline, and fix issues in case of failure.

27

ACE 2024

= Execute BuildAndDeploy.ps1

= Make sure to export all work BEFORE rebuild!!!
Hint: create all commits in your local repo and switch to
another branch and build from new one. Instances are
created based on branches and do not touch each other.

Note: in case of errors in your implementation it can be
fixed with a powerful git approach: interactive rebase.

It is strongly advised to read and understand how it can be
done (beyond the scope of this course)

Executing BuildAndDeploy Pipeline to Confirm Build

Create a Setup Deploy Integration
Package Innovator Package Tests
- Build custom - Run server - Calculate - Restore -Applya -Run
VS solutions I unit tests)| files changed temporary package to .1 integration
- Build tests - Run client since last Innovator the instance test using.
- Run FxCop unit tests release instance from to update it Aras test
code analysis - Package a baseline since baseline framework

them - Setup configs to a new state

,{%aras

Executing BuildAndDeploy Pipeline to Confirm Build

Once you have added and committed the project files in the AML Packages directory, you can rebuild
the environment at any time using the BuildAndDeploy.ps1 pipeline. Aras Innovator and the original
(baseline) database will be reinstalled, and any AML Packages will be applied after installation.

Make sure that the export files have been successfully created and stored in the AML Packages folder in
the development repository.

Try lt ..

1.

Notes:

28

. Execute BuildAndDeploy Pipeline to Confirm Build

Access the repository directory and make sure the current sprint branch (trainingxx) has been
checked out.

Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\projectl\LocalRepo.

Run script: .\BuildAndDeploy.ps1.

If the build is successful, a green prompt will appear. If the build fails, examine the log entries to
determine the problem (e.g., missing AML files?).

To avoid the issue of losing changes you have not previously exported you should execute the
Continuousintegration.psl pipeline first.

You may also run BuildAndDeploy first in a different branch to carry out some tests and avoid
wiping out all your changes from your LDE Innovator instance.

Packaging and Continuous Integration

Next Steps

= The implementation of your story is now prepared, validated and committed to the local
repository
= Note: other development team members do not yet see your changes

Remote Personal Remote Team

Repository .
Push PR
us| (fork) Repository

O.g0m. =

Working Dev Repositor
Developer | iementation Directory ~ Commit (|ncpa|) !

= In future units you will learn how to create Pull Requests, and share your results with your
team

,{%aras

Next Steps

In future units we will learn how to create a Pull Request (PR) to share our contribution with the team.

The next few steps will involve the following activities:

e Fetching and rebasing from/onto the Team’s repository trainingxx branch to ensure
synchronization, and minimize issues

e Pushing our locally-committed work to our personal fork trainingxx branch

e Creating a pull request to propose our work to the rest of the team for inclusion in the Team’s

repository trainingxx branch

29

ACE 2024

1.

2

3.

,{%aras

Customizing Aras Applications

= Customization in Aras Innovator can consist of modifying existing applications or creating
new applications

= The process is the following

Make required changes in Aras Innovator Instance

Include all changes in new package definition (only for new applications)
Export Package after the changes

Copying the Export Utility's output to the Local Repo

Modify the manifest file (only for new applications)

Stage and commit all changes to Git

Run continuous Integration script to validate and verify the new build
Test the new build by deploying to local Innovator instance

Share work with others

Customizing Aras Applications

Customization in Aras Innovator can consist of modifying existing applications or creating new
applications.

The process is the following:

1.

30

Make required changes in Aras Innovator Instance.

Login into the Innovator Instance and make customizations as per the project requirements.
Include all changes in new package definition (only for new applications).

Once all changes are complete, include them in the Package Definition.

Export Package after the changes.

Open the Export Utility and add the necessary details to prepare for export.

Copying the Export Utility’s output to the Local Repo.

Once the changes are made and the files are exported, copy the top common folder, and paste
it into the local working directory of the repository (AML-Packages). During this process, be sure
to accept any file replacement warnings that may appear.

Modify the manifest file (only for new applications)

Ensure the manifest file includes any new packages

Stage and commit all changes to Git.

Once the necessary changes have been made to the files, it is important to stage and commit
them to the version control system (Git).

Run continuous Integration script to validate and verify the new build.

Test the new build by deploying it to local Innovator instance.

Share work with others.

Packaging and Continuous Integration

Creating and Managing a New Module

= Most of a new module is realized as packages located inside AML-packages, and require new package
definitions to be created and the manifest file to be updated

com.aras.innovator. solution.PIM" path="PLM\Import™

e="com.aras.innovator.sclution.ApplicationCore" /> v LOCALREPO

="com.aras.innovator.solution.PlmEffectivity" path="PlmEffectivity\Import">
ame="com.aras.innovator.solution.PLM" />

v AML-packages

ﬂ > ApplicationCore

com.aras.innovator.solution.PLM" path="PLM\Import">
"com.aras.innovator.solution.ApplicationCore" />

com.aras.innovator.solution.PlmEffectivity" path="PlmEffectivity\Import">
name="com.aras.innovator.solution.PLM" />

</packag
<pa:kag'eI:L—.':—:"auu_tzaining.desig-n management"” path="design management\lmport"ll)

= Some modules may include CodeTree updates
= DLL (method-config.xml) changes; JavaScript changes, etc.
= Those CodeTree updates need to be placed in CodeTree folder > entation

A%'aras

Creating and Managing a New Module
A new module normally results in a new AML package with its own package definition. The package
definition contains all changes made to instances of Aras Innovator.
Several steps are needed for a new package in SDE:
e Definition of the package collecting all the needed items and specifying dependencies from
other packages
e Export of the package to the file system
e Locate the results properly in the repository directories
e Adapt the manifest file to contain the previous packages, but also the new one
e Assign the new and modified files to the Git repository with commit or stage including the
manifest file
Following those steps will ensure the package becomes part of the next build.
If you create a new package, it is recommended to use Java naming conventions for packages (lowercase
and dots indicating a hierarchy) and align folder names with the packages they contain.

In some use cases, modules require additional changes directly to the code tree. Such changes do not
need additional packaging, but they also need to be positioned in the correct folder and be assigned to
the Git repository.

Examples for such exceptions:
e Adding images for own icons in the customer folder

e Adding a DLL for federation and assigning it to the file method-config.xml

Note: Whenever you have updated any sections of the repository, the new or modified files need to be
staged and committed to become part of the next build.

31

ACE 2024

Use Case #2: CAD Form and Document Form Changes

sl o ok fom mentrom |
v

Export before changes v
Change Form in the original Aras Innovator instance v v
Export after changes v v

Copy export results to local repo v v

Stage/commit file v -

rA Run BuildAndDeploy v v

Run Continuousintegration v v

Changes in the new instance? Yes No X

,A%Iaras

Use Case #2: CAD Form and Document Form Changes

The idea behind the following Use Case #2 (UC2) is to make changes to two items that already exist in
the baseline, and to integrate the changes to the future builds. The two items are the CAD Form and the
Document Form.

For one of the two items we take all necessary steps, and we will have success; the other one is used to
demonstrate a possible error when one skips the important steps of staging and changes to Git.

Since you have added the properties to existing items, there is no need to update the import manifest
file in this UC2, as no new package has been added to the solution: we only modified files.

The subsequent import during the build works because it is an amendment to the package that already
exists in the baseline.

The UC2 steps include checks and verifications which help to understand the details of the process as
listed in the table.

Step Action CAD Document Result
Form Form

1 Export before changes v v C:\ArasProjects\project\
localExports\FormExport1\PLM

2 Change Form in the original Aras y y Forms in instance have one more field

Innovator instance each

3a Export after changes v v C:\ArasProjects\project\
localExports\FormExport2\PLM

3b View differences v v Differences in both forms

3c Review the manifest file in the local y y The manifest file is unchanged

repo and in the export results

32

Packaging and Continuous Integrati

on

Step Action CAD Document Result
Form Form
4 Copy export results to local repo y y Local repo contains the changes in the
files
5a Stage/commit the xml file in the y _ Only the modified file for the CAD form is
Form folder in Git
5b Confirm change in Git v v Git contains changes as non-staged files
6a Run Continuousintegration v v No error
6b Confirm change in Innovator y y Forms in instance still have the new field
instance
7 Run BuildAndDeploy v v No error
8 Confirm the changes in the new CAD: ok
Yes No

Innovator instance

Document: like before the change

33

ACE 2024

[E export - x
|
E s 49 e
oZ=:: @ o ®
Innovator Server
Server |hﬂp localhostDE SKTOP-5467N2U-Aras SDE Traininy g-training 909 Logout
Export Optians ras .
L, =
Export T, [CirasProjects\project TiocalExports Export] &) we [INNOVATOR |
-]
Export Referenced llems T
References to Unknown Packages: ~ * Remove Silenily @ RemovewithWaming " DontRemove
Language resources
Exportlanguages: [None =
Available for Export o
Packnges.
& Clcom aras innovator solution PLM 7 G
D Action
[Buton
[JChant
] Command Bar Section
[] Dashboard
o [] EMail Message
1 Ferm)
<
A s
Afaras

Exporting CAD and Document Forms Before Changes

Export the changes to your export folder for comparison later with your exported changes.

Trylt..

1.
2.
3.

. Export CAD and Document Forms Before Changes

Enter the server URL.
Click on the Login button to open the Login browser dialog.

Select the database from the drop-down, enter your admin username and password, then click
the Login button.

Set the destination of the export, you will find the exported files in that directory.
Refresh packages (click on the three dotted = ellipsis button).

Locate the Form package group in the package definition com.aras.innovator.solution.PLM and
click on the text (if you check the box then all contents are selected in right box).

Select the CAD and Document forms.
Click the Export button.

Note: You will be asked if you want to create a new directory or if you want to overwrite,

Trylt..

1.

34

respectively. Simply accept the option to create the new directory.

. Confirm results

Navigate to the created export folder, e.g., C:\ArasProjects\project1\localExports\Export1,
review the contents of the PLM folder and open the manifest file created by the Export Utility.
Navigate to your Export Utility log folder, e.g., C:\"~\PackagelmportExportUtilities\Export\log
and review the Export log.

Packaging and Continuous Integration

Modifying CAD and Document Forms

CAD x Document
“JCAD i [£9 Document 7 =
©u 8)) m- [[o] [0 > IR S
| e Field Type FieldLabel Field Physical Field Border Field CSS Field £

CAD" Fields Field Type Field Label Field Physical Field Border Field CSS Field Ev

arial, heivetica, sans-senit

o Bt O right O ce
:
h created_on
x] Snap - X B A M@ ME D 5 [Cumtromer] s
Document Mumber Revision State Rssigned Creator 1.3 image ant Number Revision Sute Assigned Creator Select an image
=} v [=] v 7—
i S —
Natles Files Attached

,A‘{%,'aras

Modifying CAD and Document Forms

The changes shown in this example are the addition of an unused property into the forms for both
ltemTypes.

Try It ... Modify CAD Form

Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the CAD Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_on.

5. Place the property on the form, change the label to Created on and save the form.

=

Try It ... Modify Document Form
1. Login to Aras Innovator as user admin.
2. Select Administration > Forms and search for the Document Form.
3. Switch to Edit mode.
4. Click on Unused Properties and select created_on.
5. Place the property on the form, change the label to Created on and save the form.

35

ACE 2024

Exporting CAD and Document Forms After Changes ==
jf‘l;apm’ . - X

Emot Setngs Exdt Aot
Innowator Server

Server [hapilocalhost DESKTOP-5467N2U-ArasSDE Training-training09 Logout

Export Opbons
Expot To: [C:ArasProjectslprojectTlocalExporsfFormE xpon2 level [

Export Referenced Items r

References to Unknown Packages: Remave Silently ' Remave with Waming ' DontRemaove

Language resources

Export languages: [jone -

Awailable for Expont
Packages

5 [] com aras.innavator solution PLM ~ J
[Acon
[Bution
O Chart
[Comman: \d Bar Secton
[Dashboard
[EMail Message
[Form

A%_;aras

Exporting CAD and Document Forms After Changes

Export your changes to the new destination folder C:\ArasProjects\project1\localExports\FormExport2,
marking the two Form items CAD and Document.

Try It ... Export CAD and Document Forms After Changes
1. Open the Export Utility in Administrator mode.

2. Populate the different fields as before and set the Export folder as
C:\ArasProjects\projectl\localExports\FormExport2.

3. Review the Export Utility log and the manifest file.

36

Packaging and Continuous Integration

Reviewing Form Differences With KDiff3 m
,{%aras

Reviewing Form Differences With KDiff3

As a good exercise, analyze the differences between the export data before and after changes. We want
to avoid situations where additional changes (currently not relevant) are present before we make a

commit.
Try It ... Review Differences in the Result Files for the CAD Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the CAD Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\CAD.xml as the A
(Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\CAD.xml as the B
file.

4. Observe the differences: We find the definition of one additional field with the name property
created_on in the exported xml-file after the change — that reflects exactly what we changed
from the UL.

Try It ... Review Differences in the Result Files for the Document Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the Document
Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\Document.xml as
the A (Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\Document.xml as
the B file.

4. Observe the differences: there are no differences. We find the definition of one additional field

with the name property created_on in the exported xml-file after the change — that reflects
exactly what we changed from the Ul.

37

ACE 2024

Reviewing the Manifest File

= Contains information for the Import Utility about:
= Packages to be processed
= Package dependencies
= Package disk path locations

kimports>
<package name='{com.aras.innovator.solution.PLM] 3:=a:h=' Import">
<dependson name="com.aras.innovator.solution.ApplicationCore" />

</package>
</imports>

,{%aras

Reviewing the Manifest File

The Export Utility creates a manifest file that includes the exported package, i.e., PLM in our use case.
The contents of the imports.mf file are already part of the current manifest file in the repository AML-
package folder.

Try It ... Compare Manifest Files in Export and Repo Folders
1. Open the first imports.mf file from C:\ArasProjects\project1\localExports\FormExport2 (= result
of export).
2. Open second imports.mf file from C:\ArasProjects\project1\LocalRepo\AML-packages (= used
for future builds).
3. Compare the two files: Both files will be identical in the PLM section (you may also use Kdiff3 to
compare files).

Note: the Export Utility simplifies the name of the package during the creation of folder names. Notice
that the Export Utility only uses the last element of the package name PLM as folder name.

38

Packaging and Continuous Integration

,é;aras

Copying the Export Utility’s Output to the Local Repo m
» This PC » Lacal Disk (C) » ArasProjects » project! » LocalExports > FormExport2 - v q > This PC » Local Disk (C) » ArasProjects > project! » LocalRepo »
O Mame Date medified Type [Mame Date modified Type
PLM File f git le fo
imports.mf MF F © AgentService le fo
@ AmliDeploymentScripts le fo
e AML-packages le fol

=4 Replace or Skip Files - x

Copying 5 items from FormExport? to AML-packages

The destination has 2 files with the same names
+ Replace the files in the destination
*2 Skip these files

 Let me decide for each file

Copying the Export Utility’s Output to the Local Repo

When you have the export results, you can copy the top common folder and paste it in the repo local
working directory and accept file replacement warnings. This approach allows you to avoid forgetting

files.

Try It ... Copy the Export Utility’s Output to the Local Repo

1.

Copy and paste the folder C:\ArasProjects\project1\localExports\FormExport2\PLM onto the
corresponding folder in the local repo under AML-packages.

Accept the replacement and verify the contents of the “\AML-packages\PLM\Import\Form
folder: the CAD.xml and Document.xml files should be the only updated files.

39

ACE 2024

Staging and Committing the Modified

CAD.xml File m

c/Ar ectl/TocalRepo/AML-packages

$ git status
on training09

t:
' to update wh.

us
Training09

C
Your branch is up to date with 'team/training09’

i
Al aras

Staging and Committing the Modified CAD.xml File

To add the modified file CAD.xml to the repository, we stage it by using the commands git add
.../CAD.xml and commit - m “commit message”.

We do not stage the modified file Document.xml to see the different behavior.

Try It ... Stage and Commit the Modified CAD.xml File
1. Open Git Bash and navigate to C:\ArasProjects\projectl\LocalRepo\AML-packages.

2. Verify the status of the Git repository by running git status.
Result: you will see the two files CAD.xml and Document.xml as modified files but not staged
files yet.

3. Stage the file CAD.xml: git add PLM/Import/Form/CAD.xml.

Verify now the new status of the Git repository by running git status.
Result: you will see only the file Document.xml as not staged file; the file CAD.xml is displayed
as a modified and staged file.

5. Commit the CAD.xml file using the command git commit -m “Changed the CAD Form”.

Note: You may also see the status of the Git repository before executing any steps within Git Extensions.

40

Packaging and Continuous Integration

X Commit ot

LE R

b ining08 — teomvbiningdd Staged 02 in 0 Cod O

Confirming Your Changes in Git Extensions ==

After Staging/Committing

A,aras

Before Staging/Committing

Confirming Your Changes in Git Extensions

You may use Git Extensions to verify the status of your repo before and after staging and committing the
changes.

Try It ... Confirm Your Changes in Git Extensions

1.
2.

Open Git Extensions from the right-click context menu of your repository.
Click on Commit (2) in the toolbar to open the Commit ... dialog: you will see 2 non-staged files

(Before Staging/Committing screenshot).

After you have staged and committed the CAD.xml file (done in previous step), go to the

Working Directory in Git Extensions.

Click on the Diff tab and select the Document.xml file.
Notice that it displays an additional Item block with the name property created_on (After

Staging/Committing screenshot).

41

ACE 2024

Continuous Integration Script

Definition Steps
= Final validation that everything is working correctly 1. Unzips CodeTree.zip from Baseline into temporary
folder

= Provided to developers to ensure build is successful

« It is the same script that runs on the Azure DevOps project 2. Sets up new temporary innovator instance in IS

pipeline 3 Restores database in MSSQL Server from Baseline

= Successful completion of this target gives confidence that backup

repository is in working state 4 Sets up database connection in
InnovatorServerConfig.xml

5 Deploys changes from Git repository into new
instance

6. Runs defined Integration tests against new innovator
instance

=~

Reports result to user as either SUCCESS!!!or
FAILURE!!

8. Drops temporary innovator instance, drop database

,&,’aras

Continuous Integration Script
Cl Defined

e An automated utility script is provided as part of each customer repository to perform final
validation and verification that a build is successful.

e This script can be run by developers or system integrators manually to determine if the build
passes or fails. Automation tools are also available to provide scheduled executions of this script
on a dedicated Cl server.

Cl Steps

e The Cl script runs all the integration tests that have been created for a project by installing and
building a new instance of Aras Innovator, applying the project code and configuration, and
making sure all tests are successful.

e Areportindicates Success or Failure with a running log if issues need to be resolved. The script
then deletes the running instance (and database).

42

Packaging and Continuous Integration

Running Continuous Integration Script

= Access Local Dev Environment repository

» Execute Continuousintegration script

,ﬁ;aras

Running Continuous Integration Script

Run the Continuousintegration.psl script as administrator to ensure that your repository is still in a valid
working state. You should receive a green success message.

Try It ... Run Continuous Integration Script

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\projectl\LocalRepo.

2. Run script: .\Continuousintegration.ps1.
Verify the result from the admin PowerShell window and by opening the log, i.e.,
Continuousintegration.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage,
DeployStage, and InstanceTestsStage, which contain log details for the 3 stages of the script.

43

ACE 2024

[3] CAD Document 1 x

[7) CAD Document 1

[save | Delete

CAD Document

Document Number Revision Stats

Name

Type Authering Tes! Version

Description

Structure Parents Files Changes

[3) CAD Documents ~ 7

[=ET] Q €@ |Hidden ~
= Seque. DocumentNu.. + Revi Name

,ﬁ;aras

Assigned Creator
=]

Designated User
[i=]

From Template

Changes Pending
(] Standard
[Template
Part

Wi
"

Tvoe

Createa On

Native File
& Selectile
Viewabie File

&, Selectfle

State

Confirming Changes in Aras Innovator Before Rebuilding

*) Document 1 x

=) Document 1

@ save Delete

Document

Document Number Revision State Assigned Creator

Name Designated User

Type Authoring Tool Version Effective Date

© v

Description From Template
Files Attached
Changes Pending

[Tempiate
Files Changes

| Files v 77

S Q € Hidden v || & -] o~

= || Related File | File Type [..] Comments Sequ.. 1 | Is Shared

Confirming Changes in Aras Innovator Before Rebuilding

Verify that the current instance is using the modified forms for CAD and Document items. In the next
steps we will delete the current Innovator instance and create a new one.

Try It ... Confirm Changes in Aras Innovator Before Rebuilding
1. Go to your Innovator client in a browser.
2. Create a CAD document and notice the new field named Created On.
3. Create a document and notice the new field named Created On.

44

Packaging and Continuous Integration

Rebuilding Aras Innovator Instance

= Rebuild Aras Innovator instance
by executing BuildAndDeploy script

,A}..'aras

Rebuilding Aras Innovator Instance
Rebuild your Aras Innovator instance using the script BuildAndDeploy.ps1. You should receive a green
success message.

In the output you will find the URL of the new Aras Innovator instance.

Try It ... Rebuild Aras Innovator

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\projectl\LocalRepo.

2. Run script: .\BuildAndDeploy.ps1.
Verify the result from the admin PowerShell window and by opening the log, i.e.,
BuildAndDeploy.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage, and
DeployStage, which contain log details for the 2 stages of the script.

45

ACE 2024

. . g Step 8
Reviewing CAD and Document Forms After Rebuilding
| L8] GAD Document1 x | | Document 1 x Before rebuild
| [3) CAD Document 1 2| Document 1

{@) Save Delete [® save Delete
— B — Created On
CAD D t o Document u]

nnnnnn
DocumentMumber Revision State Assigned Creatar select an Iy
o .
= No new field
Name Designated User Name Designated User
-

Type Autharing Tool Version Effactive Date

Description From Template

D Suancard Files Amtached
[Teme Changes Pending
Part [Template
Files Changes o
Structure Parents Files Changes o
Files + 77
CAD Documents v
2] Q €@ Hidden ~ ||@- - 2
B & Q €@ |Hdden ~ | & B &

= || Related File |. File Type[..] Comments Sequ.. 1 IsShared

A%'aras

Reviewing CAD and Document Forms After Rebuilding

The form for the CAD is like it was before the rebuild, meaning, it contains our intended change. On the
other hand, the form for the document fell back to the initial state without a field for created_on.

The example for the document form illustrates what happens if you have not staged and committed
your changes before the next rebuild.

If you have kept your exports in separate folders, you can recover them.

Running Continuousintegration.ps1 beforehand will not and cannot indicate the issue - it simply does
not know what you forgot in the staging.

Avoid this situation by staging or committing changes before building, i.e., before running
BuildAndDeploy.ps1.

Try It ... Review CAD and Document Forms After Rebuilding
1. Access the newly rebuilt Innovator instance.
2. Open the forms for the Document and the CAD document and notice any new changes.

46

Packaging and Continuous Integration

Summary

You should now be able to

= Understand Aras DevOps (AD)

» Understand packaging in Aras Innovator

= Differentiate between packaged changes and instance specific changes

= Understand packaging in Aras DevOps

=« Export changes for Aras DevOps CI/CD (Continuous Integration/Continuous Delivery) control

= Understand the impact of changes in working directory vs staged or committed changes
= Build a sample project

= Package and export sample project

= Validate and commit sample project into local repository

= Rebuild local innovator instance with BuildAndDeploy pipeline

,ﬁ;'aras

Thank you for participating in this brief introduction to Aras DevOps CI/CD processes for Aras Innovator.
For more information, please go to the following web sites and pages:

e https://www.aras.com/en/why-aras/aras-enterprise-saas

e https://www.aras.com/community/subscriber-portal/training/w/development-best-
practices/1003/aras-devops-training

e https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevO
ps%20-%20User%20Guide.pdf

e https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/Start
Page.htm
e https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20

PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-
%20Administrator%20Guide.pdf

47

https://www.aras.com/en/why-aras/aras-enterprise-saas
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf

	Packaging and Continuous Integration
	Overview
	Objectives
	Aras DevOps High-Level View
	Pre-configured Continuous Integration template
	Continuous Delivery
	Standard Development Environment (SDE)

	Packaging in Aras Innovator
	Understanding Packaging
	Try It … Explore existing Package Definitions

	Solution Package Overview
	Package Definition
	Package Groups
	Package Elements

	Understanding Packaging and Instance Specific Changes
	Guidelines for AML Packages
	Scope of Next Activities
	Work in LDE
	Work in SDE

	Exporting a Package
	Try It … Open the Export Utility

	Use Case #1: Reviewing the Sample Project
	Project Naming Conventions and Starting Branch
	Establish Naming Conventions

	Preparing the Local Development Environment
	Recommendations

	Creating a Package
	Try it … Create a Package

	Defining a New Item Type: atxx Design Request
	Try it … Create a Sequence
	Try it … Create the Design Request ItemType
	Try it … Create Custom Properties for the Design Request
	Try it … Update the New Design Request Form

	Creating and Saving a Method
	Try It … Create and Save a Method

	Subscribing Method to Server Events
	Try It … Subscribe Method to Server Events

	Adding Elements to Export Package
	Try it … Add Elements to Export Package

	Adding New ItemType to TOC
	Try it … Add New ItemType to TOC

	Exporting Contents of New Package Definition
	Try It … Export Contents of New Package Definition

	Placing Export Package Contents Into Local Repository
	Try It … Place Export Package Contents Into Local Repository

	Staging and Committing Changes
	Try It … Stage and Commit Changes

	Executing AML Before/After Package Import Scripts
	Executing ContinuousIntegration Pipeline to Validate Build
	Try It … Execute ContinuousIntegration Pipeline to Validate Build

	Executing BuildAndDeploy Pipeline to Confirm Build
	Try It … Execute BuildAndDeploy Pipeline to Confirm Build

	Next Steps
	Customizing Aras Applications
	Creating and Managing a New Module
	Use Case #2: CAD Form and Document Form Changes
	Exporting CAD and Document Forms Before Changes
	Try It … Export CAD and Document Forms Before Changes
	Try It … Confirm results

	Modifying CAD and Document Forms
	Try It … Modify CAD Form
	Try It … Modify Document Form

	Exporting CAD and Document Forms After Changes
	Try It … Export CAD and Document Forms After Changes

	Reviewing Form Differences With KDiff3
	Try It … Review Differences in the Result Files for the CAD Form
	Try It … Review Differences in the Result Files for the Document Form

	Reviewing the Manifest File
	Try It … Compare Manifest Files in Export and Repo Folders

	Copying the Export Utility’s Output to the Local Repo
	Try It … Copy the Export Utility’s Output to the Local Repo

	Staging and Committing the Modified CAD.xml File
	Try It … Stage and Commit the Modified CAD.xml File

	Confirming Your Changes in Git Extensions
	Try It … Confirm Your Changes in Git Extensions

	Continuous Integration Script
	CI Defined
	CI Steps

	Running Continuous Integration Script
	Try It … Run Continuous Integration Script

	Confirming Changes in Aras Innovator Before Rebuilding
	Try It … Confirm Changes in Aras Innovator Before Rebuilding

	Rebuilding Aras Innovator Instance
	Try It … Rebuild Aras Innovator

	Reviewing CAD and Document Forms After Rebuilding
	Try It … Review CAD and Document Forms After Rebuilding

