
 Aras DevOps Introduction

1

Aras DevOps Introduction

ACE 2024

Copyright © 2024 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MARCH 2024

1

Aras DevOps Introduction
Overview

In this session, you will learn the basics, purpose, and benefits of Aras DevOps. We will also discuss the
Continuous Integration and Continuous Delivery (CI/CD) processes at the heart of Aras DevOps, and the
various tools used during a development project.

You will also experiment with the Aras DevOps toolchain used in the Local Development Environment
(LDE) through a simple configuration use case in which you will make changes to out-of-the-box forms,
export changes into the customer repository, commit the changes using Git (Source Control
Management), and finally rebuild your local Innovator instance with the changed items with the
BuildAndDeploy pipeline.

Objectives

• Understand Aras DevOps

• Understand the Standard Development Environment (SDE)

• Navigate the Local Development Environment (LDE)

• Review the components of Aras Azure DevOps

• Review the Aras DevOps Continuous Integration/Continuous Delivery (CI/CD) processes

• Understand the Aras DevOps project Git Repository structure

• State the tools included in Aras DevOps and their use

• Understand packaging in Aras DevOps

• Differentiate between packaged changes and instance specific changes

• Export changes for Aras DevOps CI/CD control

• Understand the impact of changes in working directory vs staged or committed changes

ACE 2024

2

DevOps Defined
Culture

DevOps is a practice that emphasizes the collaboration and communication of software developers and
IT Operations. But it's more than that. It's a culture change. It's tearing down silos and breaking down
walls to bring groups of people together to form a team with a common set of principles, methods,
values, and tools.

Automation

The process of application delivery and infrastructure management is automated. This is so that
building, testing, and releasing software, as well as the deployment, configuration, and management of
the infrastructure in which that software runs can happen rapidly, frequently, and more reliably. The
team is accomplishing basic tasks planning, coding, building, testing, releasing, deploying, and
configuring.

Lean

DevOps combines development and operations to increase the efficiency, speed, and security of
software development and delivery compared to traditional processes. A nimbler software development
lifecycle results in a competitive advantage for businesses and their customers. High throughput, with
frequent and rapid deployment of small batch size.

Measurements

It is important to prove continuous improvement efforts are improving the software development work.
Fortunately, there are many tools and technologies for measuring performance, and assessing the
proper metrics to use in your software development cycles.

 Aras DevOps Introduction

3

Sharing

DevOps contributors work in a continuous loop, a cycle of working class functionally. Together, many
different members from technical teams, business teams, the coding team, production and deployment
team, and the QA team all work through the entire process to understand and meet the needs of the
customer with seamless IT services. This sharing increases trust, faster software releases, more reliable
deployments, and a better feedback loop between teams and customers; ultimately this helps break
down the Development and Operations siloes and benefit both customers and DevOps personnel.

CALMS: Culture, Automation, Lean, Measurement, Sharing

ACE 2024

4

Continuous Integration/Continuous Delivery (CI/CD) Explained
DevOps and CI/CD

DevOps and CI/CD tend to get used interchangeably

• DevOps is a Culture – and it is based on Continuous Integration and Continuous Delivery
practices.

• You need to build and adopt processes to hit the DevOps culture.

• It starts with Code – Source code control. That code needs to be built into deliveries and
artifacts that can be deployed. These deployments need to be tested and the more automated
testing you have, the better the quality of the testing. Lastly deploy the packaged code into the
UAT, Staging and production environments. Tying these together is the basics of the CI/CD
pipeline.

• With a CI/CD pipeline, developers can make changes to code that are then automatically tested
and pushed out for delivery and deployment.

CI/CD enables the delivery team to:

• Make changes on their local machines

• Commit their changes into a central repository

• Merge their changes with a pull request

The illustration above shows the basic CI/CD flow:

• Code = source code control. Source code control includes items such as configuration files and
settings. It includes the code tree and the various libraries that constitute the solution.

• Commits are means to manage changes that take solution from one configuration to the next.

 Aras DevOps Introduction

5

• The CI Pipeline supports the continuous integration where various contributors use pull requests
(PRs) to submit their contributions to the integrated whole. The system automatically builds and
runs available automated tests. Reviewers check the work before accepting it. The resulting
artifacts are eventually deployed to SIT for automated testing.

• The CD Pipeline supports the need to deploy the validated (SIT tested) artifacts for user
acceptance test and in some cases, it is used as a basis to verify the ability to migrate existing
customer data into a staging area. Issues may arise during UAT. After remediation of the issues,
the solution is eventually deployed into production.

Notes:

• CODE: Changes, including code, configuration, etc.

• Source Code Control Tool: Git

• CI/CD Pipelines: For example, Jenkins, Azure Pipelines, Bamboo, etc.

• SIT: System Integration Testing

• UAT: User Acceptance Testing

ACE 2024

6

Aras DevOps High-Level View
Pre-configured Continuous Integration template

• Provides GIT for Source Control Management leveraging a Pull Request (PR) process.

• Provides Azure Pipelines for executing automated tests, code scans, etc.

• Provides Artifactory for storing all build artifacts to allow for reuse in deploying to multiple
environments.

• Provides an SIT server to allow for end user/QA validation and review of work.

• Provides TAF license so your teams can build robust automated tests.

• Dedicated team to help ensure the pipeline is operational.

Continuous Delivery

• Aras DevOps provides the full CI experience. Continuous Delivery is reviewed on a project-by-
project basis to meet customer needs.

• Aras Enterprise offering provides the full CI/CD offering for managing deployments as well as
continuous integration.

• Full Continuous Delivery pipeline available instantly to support your DevOps Journey

• Continue to benefit as Aras evolves and introduces new enhancements into the Aras DevOps
offerings.

• No additional internal hardware/maintenance required for supporting the pipeline.

• Uses the same tools and process leveraged by Aras Solution Delivery.

• Can be leveraged by downstream teams (e.g., support and upgrades) to help improve overall
customer satisfaction.

• Includes TAF license for helping build/extend your test automation.

 Aras DevOps Introduction

7

Standard Development Environment (SDE)

• An environment with tools and processes that enables you to adopt industry-common CI/CD
practices.

• Standard Tools and Software – all tools and software (required and optional) and its integrated
configuration that we are using locally for our goals (Git, Visual Studio, MS SQL and so on)

• Aras Tools – all proprietary software and solutions that we are using (Aras VS Plugin,
Import/Export, TAF, …)

• Services – hosted services and applications accessible via network/Internet (Azure DevOps –
base tool for the SDE CI/CD and other basic concepts)

• Industry Practices – how we are using everything listed above (Code Guidelines, Industry Best
Practices: CI/CD, DevOps)

Aras Pipelines – formal definition of start to end and iterative processes with roles, activities and other
detentions that helps to reach local and global goals.

ACE 2024

8

Azure DevOps Components
Azure Services include Azure DevOps Git, Azure Boards, Azure DevOps Pipelines, and Azure DevOps
Artifacts.

Azure Aras DevOps comes preconfigured with limited scope for changes to maintain the “standard.” In
general, add-ons from the marketplace are not supported.

Azure Boards

Azure Boards can be used to plan, track, and discuss work across teams using the Agile planning tools
that are available. Using Azure Boards, teams can manage their software projects. It also offers a unique
set of capabilities, including native support for Scrum and Kanban. You can also create customizable
dashboards, and it offers integrated reporting and integration with Microsoft Teams and Slack.

You can create and track user stories, backlog items, tasks, features, and bugs that are associated with
the project using Azure Boards.

Azure Repos

Azure Repos provides support for private Git repository hosting. It offers a set of version control tools
that can be used to manage the source code of every development project, large or small. When you
edit the code, you ask the source control system to create a snapshot of the files. This snapshot is saved
permanently so that it can be recalled later if needed.

Azure Repos offers standard Git so that developers can use the tools and clients of their choice, such as
Git for Windows, Mac, third-party Git services, and tools such as Visual Studio and Visual Studio Code.

Azure Pipelines

You can use Azure Pipelines to automatically build, test, and deploy code to make it available to other
users and deploy it to different targets, such as a development, test, acceptance, and production
(DTAP) environment. It combines CI/CD to automatically build and deploy your code.

 Aras DevOps Introduction

9

Azure Artifacts

With Azure Artifacts, you can create and share NuGet, npm, Python, and Maven packages from private
and public sources with teams in Azure DevOps. These packages can be used in source code and can be
made available to the CI/CD pipelines. With Azure Artifacts, you can create multiple feeds that you can
use to organize and control access to the packages.

Azure Test Plans

Test Plans provide a browser-based test management solution to test your applications, including
manual/exploratory testing and continuous testing. It allows users to manage test plans, test suites, and
test cases for everyone in the software development process.

With Test Plans, you can ensure your Quality Assurance team uses the same Azure DevOps project as
your developers, as the single source of truth, to build out their Test Plans and gather feedback from
stakeholders.

ACE 2024

10

Local Development Environment (LDE) Tools
Required and Optional Tools

• Git (use latest version)

• Git Extensions (not required but useful for learning/training purposes)

• Microsoft IIS Enabled (according to Innovator Installation Guide)

• MSSQL Server 2019 or 2022 (according to Innovator Installation Guide)

• SSMS SQL Server Management Studio (to manage SQL server useful for learning/training
purposes)

• Visual Studio Community Edition (or Pro) 2019 or 2022, if tests will be developed

• Aras Method Plugin

• ReSharper Standard Edition at least (in case of heavy performance work – needs Ultimate
edition) – VS extension to help write code faster and to debug performance issues

• File diff/merge tool (KDiff3)

• Web Browsers

• 7zip (installed by Aras DevOps)

• Visual Code/Notepad++, or other preferred text editor (not required but useful for
learning/training purposes)

• QA tools

• Greenshot (for free) or similar; Fiddler (for free); Recordit (for free) or similar;
SoapUI/Postman

• Test Management System

• Total Commander (any version) – for comparing files and folders

 Aras DevOps Introduction

11

Git Repository Template Defined
The Aras DevOps Git Repository Template is a template used to initialize the git customer repository,
and support Innovator development process.

The main idea of using the template is to have a standard repository with a clear structure, useful
automation, and an easily configurable CI/CD process. In some sense it is a CI/CD framework. It
combines all Aras artifacts like the platform itself, standard applications and tools and provides the
defined structure.

From the picture you should understand what the Git Repository consists of. It is the entire Aras
Innovator platform in a Baseline format, but instead of storing the DB.bak that can be huge, we export
all AML packages metadata via Aras Export Tool and commit them. The crucial word here is metadata
that means only Items definitions without thousands of instantiated objects. As you know, the Baseline
does not separate logical blocks, and therefore Aras applications such as RE (Requirements Engineering)
and TAF (Test Automation Framework) blocks from the schema will be in the Git Repository as a
Baseline part. Aras Import Tool as well as Aras Export Tool, ConsoleUpgrade and LanguageTool are
stored in the Git Repository as they are.

Notes:

• RE: Requirements Engineering

• TAF: Test Automation Framework

• ARK: Aras Reusable Kit (a common name for the internal reusable Aras solutions)

ACE 2024

12

Local Repository Structure
Contents

• Automated scripts, batch files, tools required to setup CI and CD pipelines on Azure DevOps.

• Place holder for Scripts to update Innovator database.

• Place holder for Code tree files to be updated.

• Configuration files and templates used for CI and CD.

• Framework to develop, test and maintain your custom code.

Sample Data

• Sometimes it is useful to have not only a solution Deployment Package containing metadata
(ItemTypes, Methods, Identities and so on) but also some package with data corresponding to
this metadata (concrete Items, Users, etc.). Given the fact that data and metadata are "Items" in
Aras terms, we consider the Sample Data package to be a Deployment Package (Deployment
Package Content to be more precise) from a structural point of view.

• Sample Data - a special form of Deployment Package Content with data like Users, Items, and
so on. Unlike usual Deployment Package Content, it will contain exactly data rather than
solution/functionality. Such a package is being applied to Aras Innovator instance once
Deployment Package Content with metadata is imported. As a result, you will get both solution
and data in the instance.

 Aras DevOps Introduction

13

Aras DevOps CI/CD Process
Cloud CI Environment

The Aras and Customer Dev teams may work together to contribute to the project’s codebase. At some
point their contribution will be pushed to the Azure DevOps Git Repo; a Pull Request (PR) is then
created, and a CI build process is triggered to ensure the codebase passes the necessary checks. If all
policy checks have passed successfully and the PR review team is satisfied with the outcome, the
contribution may be merged into the central codebase. The build files are then stored in the Azure
DevOps Artifacts.

Cloud SIT Environment

Deploying on SIT allows developers and testers to assess the behavior and performance of the Aras
Innovator in a simulated production-like setting before it is deployed to the actual production
environment.

CD Environment

Customer, Aras’s teams, may work now on deploying and validating the build package in
Staging/UAT/Production environments.

ACE 2024

14

DevOps Contribution Process
Each developer in a team is considered a contributor, as are test/QA engineers and others. The
developers and others who may contribute source files (configuration files, source code C#, etc.) need to
create a Fork in which to manage their work in the SDE.

Step Description

1 Create a Fork (copy of the shared team repository) in SDE (Aras Azure DevOps).

2 Clone your Fork to your local environment and check out the branch you wish to work on.

3 This is a step to repeat often (at least once a day before starting your work). You need to add
a remote reference to the team repo so that you can fetch and rebase your current work on
it. This process reduces (or even eliminates) the chance that your eventual PR (Pull Request) is
rejected because of conflicts. You should also do the same with your Fork, particularly if
others have access to it and can update it.

4 Do your work – execute RunIntegrationTests, ContinuousIntegration, and other scripts
locally.

5 Commit your changes locally and then push to Fork.

6 Create your pull request in SDE.

7 Updates to your source branch after your pull request is created and the initial branch
creation trigger a ContinuousIntegration pipeline execution based on branch policy.

8 When the ContinuousIntegration pipeline has successfully built your artifact, it will run tests
and report a success status (green) or failure status (red). Based on that status, reviewers may
approve your PR. They may also reject it even with a green build, if some other project
practice is violated.

9 When the PR is approved and merged, the branch would typically have a policy to run the
ContinuousIntegration pipeline again. This is to make sure that all PRs are still in sync. The
goal is to ensure that the common repo branch is always buildable.

 Aras DevOps Introduction

15

Pipelines
Azure DevOps Pipelines is the automation server used to automatically create application builds; batch
files may also be used. In Aras DevOps, all these stages logic is implemented in NAnt, which, in turn, runs
a lot of Aras (black boxes on the schema) and 3rd party tools.

An abstract CI/CD pipeline which is used in Aras DevOps is presented:

Stages

• Build

• Build custom VS solutions

• Build tests

• Create a package

• Calculate files changed since last release

• Package them

• Set up Innovator

• Restore temporary Innovator instance from a baseline

• Set up configs

• Deploy Package

• Apply a package to the instance, to update since baseline to a new state

• Integration Tests

• Run integration tests using Aras TAF

ACE 2024

16

Packaging in Aras Innovator
Aras Innovator is a low-code platform, which means users can add truly little code to achieve
outstanding results rapidly. It also means user can use configuration to express business rules, such as a
life cycle map.

When working directly with an instance of Aras Innovator, these changes are stored anonymously within
and can reference any other items already in the system and vice versa.

Making such changes directly in a business-critical system serving users is not a good practice. As
mentioned earlier, a central focus of DevOps is to instill the discipline of well-managed solution
configurations, including change management and implementation.

In larger solution development engagements, exported packages and their elements can be put under
version control and can be input to an automated build process (CI/CD).

The following sections explain how to export these changes into named packages, define explicit
dependencies, and commit the changes for proper configuration and version control.

This way, it is ensured that the build system can replicate the swiftly accomplished interactive tasks -
thus introducing configuration and version control discipline to the low-code product.

The first step in this procedure is defining a package by a Package Definition item, which then can be
exported and re-imported to the central source control system for further usage in the builds.

 Aras DevOps Introduction

17

Understanding Packaging
Conceptually each package is a collection of item IDs. Additionally certain ItemTypes were introduced to
support package functionality.

A newly installed Aras Innovator database contains Package Definitions of two types:

• Aras Core Packages – These packages are used to define the basic structure of every Aras
Innovator database, regardless of what solutions are used in the database. They are created and
managed by Aras for the Core system.
Do not modify, because any modifications (addition, change of value, deletion) will put your
Aras Innovator installation functionality at risk.

• Aras Solution Packages – These packages define the elements that comprise the definition and
functional rules of different Solutions data models. They are created and managed by Aras for a
dedicated Solution. The names typically begin with com.aras.innovator.solution. Modify with
care!

Try It … Explore existing Package Definitions

1. Navigate to Administration > Configuration > PackageDefinitions.

2. Run a blank search.

3. Open some of the Package Definitions, and note their structure, for example
com.aras.innovator.core or com.aras.innovator.solution.PLM.

Notes:

• A package name must be unique within a database of an Aras installation, and it can be any text
up to 64 characters (excluding special characters; spaces are allowed).

• Package names should be globally unique, at least within your Aras ecosystem, and should
follow a naming convention. We recommend using a “.” notation for names. A good example for
this would be to follow the java package naming conventions.

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

ACE 2024

18

• Standard Aras packages from Applications and Core modules already follow a convention. The
namespaces defined in this convention are reserved for Aras internal packages and shall not be
applied outside of Aras!

 Aras DevOps Introduction

19

Understanding Packaging and Instance Specific Changes
Aras Innovator is very flexible in enabling users to do rapid application development and proofing out
concepts.

This flexibility requires management to satisfy good practices developed in the industry to manage
configuration of enterprise systems. ITIL (Information Technology Infrastructure Library) has such
controls in the form of practices in the latest versions. SOC 2 (System and Organization Controls 2)
certification also requires strong configuration (change) management.

For such reasons, administrators must adopt the discipline of extracting such changes and managing
them in DevOps. If for no other reason than to ensure the next release does not wipe out their changes.

When changes are properly change-controlled then the corresponding solution configuration can be
reproduced with assurance.

The diagram summarizes the impact of anonymous items in an instance and the effect of defining,
exporting, and providing packages to the build system.

On the left, the user has four items (A, B, C, and D). A, and D represent new or modified items which are
properly packaged, exported, copied, and assigned to the change control system Git. B and C represent
Innovator instance specific items which are not intended for use in the next build and therefore
consequently not packaged.

The build system then produces the instance on the right. It is important to observe that the Aras
Innovator instance on the right excludes items B and C, highlighting the capability to dictate what
DevOps builds. This capacity to specify what DevOps creates is a foundational element of utilizing
DevOps.

Note: The visualization is reduced to changed items only.

ACE 2024

20

Scope of Next Activities
In the next steps we will implement a small User Story and learn how to prepare changes to be
committed. We will create commits with the use-case implementation in the local repository.

Work in LDE

• The project development work for each developer begins in their Local Development
Environment (LDE), after they ensured that the trainingxx branch has been checked out (this
branch was created in an earlier step from the Team’s repository corresponding branch).

• Once each developer has completed their local work, they commit their user story contribution
to their local repository and ensure that it is validated with the ContinuousIntegration and/or
BuildAndDeploy pipelines.

• Each developer performs a git fetch/rebase operation from the appropriate Team’s repository
branch to ensure that they are fully synchronized. Any conflict that occurs because of this
operation should be fixed before taking the next steps.

Work in SDE

• Each developer performs a git push operation to their personal fork’s trainingxx branch.

• In Azure DevOps, each developer creates an appropriate Pull Request (PR) to present their work
to the review team.

• If the developer’s contribution is accepted it is merged into the Team’s repository trainingxx
branch.

Note: When working on one feature at a time then only the “development” branch is necessary.

 Aras DevOps Introduction

21

Use Case: CAD Form and Document Form Changes
The idea behind the following use case is to make changes to two items that already exist in the
baseline, and to integrate the changes to the future builds. The two items are the CAD Form and the
Document Form.

For one of the two items we perform all necessary steps, and we will have success; the other one is used
to demonstrate a possible error when one skips the important steps of staging and committing any
changes to Git.

Since you have added the properties to existing items, there is no need to update the import manifest
file in this use case, as no new package has been added to the solution: we only modified files.

The subsequent import during the build works because it is an amendment to the package that already
exists in the baseline.

The use case steps include checks and verifications which help to understand the details of the process
as listed in the table.

Step Action
CAD
Form

Document
Form

Result

1 Export before changes  
C:\ArasProjects\project\
localExports\FormExport1\PLM

2
Change Form in the original Aras
Innovator instance

 
Forms in instance have one more field
each

3a Export after changes  
C:\ArasProjects\project\
localExports\FormExport2\PLM

3b View differences   Differences in both forms

3c
Review the manifest file in the local
repo and in the export results

  The manifest file is unchanged

ACE 2024

22

Step Action
CAD
Form

Document
Form

Result

4 Copy export results to local repo  
Local repo contains the changes in the
files

5a
Stage/commit the xml file in the
Form folder

 –
Only the modified file for the CAD form is
in Git

5b Confirm change in Git   Git contains changes as non-staged files

6a Run ContinuousIntegration   No error

6b
Confirm change in Innovator
instance

  Forms in instance still have the new field

7 Run BuildAndDeploy   No error

8
Confirm the changes in the new
Innovator instance

Yes No
CAD: ok
Document: like before the change

 Aras DevOps Introduction

23

Exporting CAD and Document Forms Before Changes
Export the changes to your export folder for comparison later with your exported changes.

Try It … Export CAD and Document Forms Before Changes

1. Enter the server URL.

2. Click on the Login button to open the Login browser dialog.

3. Select the database from the drop-down, enter your admin username and password, then click
the Login button.

4. Set the destination of the export, you will find the exported files in that directory.

5. Refresh packages (click on the three dotted = ellipsis button).

6. Locate the Form package group in the package definition com.aras.innovator.solution.PLM and
click on the text (if you check the box then all contents are selected in right box).

7. Select the CAD and Document forms.

8. Click the Export button.

Note: You will be asked if you want to create a new directory or if you want to overwrite,
respectively. Simply accept the option to create the new directory.

Try It … Confirm results

1. Navigate to the created export folder, e.g., C:\ArasProjects\project1\localExports\Export1,
review the contents of the PLM folder and open the manifest file created by the Export Utility.

2. Navigate to your Export Utility log folder, e.g., C:\~\PackageImportExportUtilities\Export\log
and review the Export log.

ACE 2024

24

Modifying CAD and Document Forms
The changes shown in this example are the addition of an unused property into the forms for both
ItemTypes.

Try It … Modify CAD Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the CAD Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_on.

5. Place the property on the form, change the label to Created on and save the form.

Try It … Modify Document Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the Document Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_on.

5. Place the property on the form, change the label to Created on and save the form.

 Aras DevOps Introduction

25

Exporting CAD and Document Forms After Changes
Export your changes to the new destination folder C:\ArasProjects\project1\localExports\FormExport2,
marking the two Form items CAD and Document.

Try It … Export CAD and Document Forms After Changes

1. Open the Export Utility in Administrator mode.

2. Populate the different fields as before and set the Export folder as
C:\ArasProjects\project1\localExports\FormExport2.

3. Review the Export Utility log and the manifest file.

ACE 2024

26

Reviewing Form Differences With KDiff3
As a good exercise, analyze the differences between the export data before and after changes. We want
to avoid situations where additional changes (currently not relevant) are present before we make a
commit.

Try It … Review Differences in the Result Files for the CAD Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the CAD Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\CAD.xml as the A
(Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\CAD.xml as the B
file.

4. Observe the differences: We find the definition of one additional field with the name property
created_on in the exported xml-file after the change – that reflects exactly what we changed
from the UI.

Try It … Review Differences in the Result Files for the Document Form

1. Use KDiff3.exe to compare the two result files containing the AML for importing the Document
Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\Document.xml as
the A (Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\Document.xml as
the B file.

4. Observe the differences: there are no differences. We find the definition of one additional field
with the name property created_on in the exported xml-file after the change – that reflects
exactly what we changed from the UI.

 Aras DevOps Introduction

27

Reviewing the Manifest File
The Export Utility creates a manifest file that includes the exported package, i.e., PLM in our use case.
The contents of the imports.mf file are already part of the current manifest file in the repository AML-
package folder.

Try It … Compare Manifest Files in Export and Repo Folders

1. Open the first imports.mf file from C:\ArasProjects\project1\localExports\FormExport2 (= result
of export).

2. Open the second imports.mf file from C:\ArasProjects\project1\LocalRepo\AML-packages (=
used for future builds).

3. Compare the two files: Both files will be identical in the PLM section (you may also use Kdiff3 to
compare files).

Note: the Export Utility simplifies the name of the package during the creation of folder names. Notice
that the Export Utility only uses the last element of the package name PLM as folder name.

ACE 2024

28

Copying the Export Utility’s Output to the Local Repo
When you have the export results, you can copy the top common folder and paste it in the repo local
working directory and accept file replacement warnings. This approach allows you to avoid forgetting
files.

Try It … Copy the Export Utility’s Output to the Local Repo

1. Copy and paste the folder C:\ArasProjects\project1\localExports\FormExport2\PLM onto the
corresponding folder in the local repo under AML-packages.

2. Accept the replacement and verify the contents of the ~\AML-packages\PLM\Import\Form
folder: the CAD.xml and Document.xml files should be the only updated files.

 Aras DevOps Introduction

29

Staging and Committing the Modified CAD.xml File
To add the modified file CAD.xml to the repository, we stage it by using the commands git add
…/CAD.xml and commit - m “commit message”.

We do not stage the modified file Document.xml to see the different behavior.

Try It … Stage and Commit the Modified CAD.xml File

1. Open Git Bash and navigate to C:\ArasProjects\project1\LocalRepo\AML-packages.

2. Verify the status of the Git repository by running git status.
Result: you will see the two files CAD.xml and Document.xml as modified files but not staged
files yet.

3. Stage the file CAD.xml: git add PLM/Import/Form/CAD.xml.

4. Verify now the new status of the Git repository by running git status.
Result: you will see only the file Document.xml as not staged file; the file CAD.xml is displayed
as a modified and staged file.

5. Commit the CAD.xml file using the command git commit -m “Changed the CAD Form”.

Note: You may also see the status of the Git repository before executing any steps within Git Extensions.

ACE 2024

30

Confirming Your Changes in Git Extensions
You may use Git Extensions to verify the status of your repo before and after staging and committing the
changes.

Try It … Confirm Your Changes in Git Extensions

1. Open Git Extensions from the right-click context menu of your repository.

2. Click on Commit (2) in the toolbar to open the Commit … dialog: you will see 2 non-staged files
(Before Staging/Committing screenshot).

3. After you have staged and committed the CAD.xml file (done in previous step), go to the
Working Directory in Git Extensions.

4. Click on the Diff tab and select the Document.xml file.

5. Notice that it displays an additional Item block with the name property created_on (After
Staging/Committing screenshot).

 Aras DevOps Introduction

31

Running Continuous Integration Script
Run the ContinuousIntegration.ps1 script as administrator to ensure that your repository is still in a valid
working state. You should receive a green success message.

CI Defined

• An automated utility script is provided as part of each customer repository to perform final
validation and verification that a build is successful.

• This script can be run by developers or system integrators manually to determine if the build
passes or fails. Automation tools are also available to provide scheduled executions of this script
on a dedicated CI server.

CI Steps

• The CI script runs all the integration tests that have been created for a project by installing and
building a new instance of Aras Innovator, applying the project code and configuration, and
making sure all tests are successful.

• A report indicates Success or Failure with a running log if issues need to be resolved. The script
then deletes the running instance (and database).

Try It … Run Continuous Integration Script

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

2. Run script: .\ContinuousIntegration.ps1.

3. Verify the result from the admin PowerShell window and by opening the log, i.e.,
ContinuousIntegration.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage,
DeployStage, and InstanceTestsStage, which contain log details for the 3 stages of the script.

ACE 2024

32

Confirming Changes in Aras Innovator Before Rebuilding
Verify that the current instance is using the modified forms for CAD and Document items. In the next
steps we will delete the current Innovator instance and create a new one.

Try It … Confirm Changes in Aras Innovator Before Rebuilding

1. Go to your Innovator client in a browser.

2. Create a CAD document and notice the new field named Created On.

3. Create a document and notice the new field named Created On.

 Aras DevOps Introduction

33

Rebuilding Aras Innovator Instance
Rebuild your Aras Innovator instance using the script BuildAndDeploy.ps1. You should receive a green
success message.

In the output you will find the URL of the new Aras Innovator instance.

Try It … Rebuild Aras Innovator

1. Open an admin PowerShell session and navigate to the local repository at
C:\ArasProjects\project1\LocalRepo.

2. Run script: .\BuildAndDeploy.ps1.

3. Verify the result from the admin PowerShell window and by opening the log, i.e.,
BuildAndDeploy.txt in ~\localRepo\AutomatedProceduresOutput\NAntOutput.

4. You may also view more detailed information from the folder
~\localRepo\AutomatedProceduresOutput\Logs and its subfolders, CommitStage, and
DeployStage, which contain log details for the 2 stages of the script.

ACE 2024

34

Reviewing CAD and Document Forms After Rebuilding
The form for the CAD is like it was before the rebuild, meaning, it contains our intended change. On the
other hand, the form for the document fell back to the initial state without a field for created_on.

The example for the document form illustrates what happens if you have not staged and committed
your changes before the next rebuild.

If you have kept your exports in separate folders, you can recover them.

Running ContinuousIntegration.ps1 beforehand will not and cannot indicate the issue – it simply does
not know what you forgot in the staging.

Avoid this situation by staging or committing changes before building, i.e., before running
BuildAndDeploy.ps1.

Try It … Review CAD and Document Forms After Rebuilding

1. Access the newly rebuilt Innovator instance.

2. Open the forms for the Document and the CAD document and notice any new changes.

 Aras DevOps Introduction

35

Next Steps
In the next unit we will learn how to create a Pull Request (PR) to share our contribution with the team.

Remember:

• Fetch and rebase frequently to get any new changes into the current local branch

• Running the BuildAndDeploy.ps1 pipeline creates a new Innovator Instance (overrides old, if it
exists) and applies your latest changes from repo

• Developers frequently commit changes to their local repository

ACE 2024

36

Thank you for participating in this brief introduction to Aras DevOps. For more information, please go to
the following web sites and pages:

• https://www.aras.com/en/why-aras/aras-enterprise-saas

• https://www.aras.com/community/subscriber-portal/training/w/development-best-
practices/1003/aras-devops-training

• https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevO
ps%20-%20User%20Guide.pdf

• https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/Start
Page.htm

• https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20
PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-
%20Administrator%20Guide.pdf

https://www.aras.com/en/why-aras/aras-enterprise-saas
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/subscriber-portal/training/w/development-best-practices/1003/aras-devops-training
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/DevOps/Aras%20DevOps%20-%20User%20Guide.pdf
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/documentationlibrary/DevOps/1.1/Content/StartPage/StartPage.htm
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf
https://www.aras.com/community/DocumentationLibrary/ALL%20PDFs/Flare%20PDF/Flare%20PDF/Aras%20Enterprise/Aras%20Enterprise%20Subscription%20(SaaS)%20-%20Administrator%20Guide.pdf

	Aras DevOps Introduction
	Overview
	Objectives
	DevOps Defined
	Culture
	Automation
	Lean
	Measurements
	Sharing

	Continuous Integration/Continuous Delivery (CI/CD) Explained
	DevOps and CI/CD

	Aras DevOps High-Level View
	Pre-configured Continuous Integration template
	Continuous Delivery
	Standard Development Environment (SDE)

	Azure DevOps Components
	Azure Boards
	Azure Repos
	Azure Pipelines
	Azure Artifacts
	Azure Test Plans

	Local Development Environment (LDE) Tools
	Required and Optional Tools

	Git Repository Template Defined
	Local Repository Structure
	Contents
	Sample Data

	Aras DevOps CI/CD Process
	Cloud CI Environment
	Cloud SIT Environment
	CD Environment

	DevOps Contribution Process
	Pipelines
	Stages

	Packaging in Aras Innovator
	Understanding Packaging
	Try It … Explore existing Package Definitions

	Understanding Packaging and Instance Specific Changes
	Scope of Next Activities
	Work in LDE
	Work in SDE

	Use Case: CAD Form and Document Form Changes
	Exporting CAD and Document Forms Before Changes
	Try It … Export CAD and Document Forms Before Changes
	Try It … Confirm results

	Modifying CAD and Document Forms
	Try It … Modify CAD Form
	Try It … Modify Document Form

	Exporting CAD and Document Forms After Changes
	Try It … Export CAD and Document Forms After Changes

	Reviewing Form Differences With KDiff3
	Try It … Review Differences in the Result Files for the CAD Form
	Try It … Review Differences in the Result Files for the Document Form

	Reviewing the Manifest File
	Try It … Compare Manifest Files in Export and Repo Folders

	Copying the Export Utility’s Output to the Local Repo
	Try It … Copy the Export Utility’s Output to the Local Repo

	Staging and Committing the Modified CAD.xml File
	Try It … Stage and Commit the Modified CAD.xml File

	Confirming Your Changes in Git Extensions
	Try It … Confirm Your Changes in Git Extensions

	Running Continuous Integration Script
	CI Defined
	CI Steps
	Try It … Run Continuous Integration Script

	Confirming Changes in Aras Innovator Before Rebuilding
	Try It … Confirm Changes in Aras Innovator Before Rebuilding

	Rebuilding Aras Innovator Instance
	Try It … Rebuild Aras Innovator

	Reviewing CAD and Document Forms After Rebuilding
	Try It … Review CAD and Document Forms After Rebuilding

	Next Steps

