

Copyright © 2023 by Aras Corporation. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently
available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for a commercial
purpose is prohibited unless prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

Microsoft, Office, SQL Server, IIS, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose or a warranty of non-infringement. Aras shall have no liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this document or by the software or hardware products described
herein.

Revision MAY 2023

 3

Packaging and Continuous Integration
Overview

In this session, you learn the basic guidelines for packaging items for Aras Innovator and how to use the
packages within Aras DevOps Continuous Integration processes.

You will also build a simple project based on a use case, add all created items into the project and then
export the project into the customer repository after validating it locally through the
ContinuousIntegration pipeline. Finally, you will rebuild your local Innovator instance with the project
items with the BuildAndDeploy pipeline.

Objectives

• Understand Aras DevOps (AD)

• Understand packaging in Aras Innovator

• Differentiate between packaged changes and instance specific changes

• Understand packaging in Aras DevOps

• Export changes for Aras DevOps CI/CD (Continuous Integration/Continuous Delivery) control

• Understand the impact of changes in working directory vs staged or committed changes

• Build a sample project

• Package and export sample project

• Validate and commit sample project into local repository

• Rebuild local innovator instance with BuildAndDeploy pipeline

Aras Innovator Configuring Solutions Student Guide

4

DevOps Defined

• DevOps combines software development and IT operations to increase the efficiency, speed,
and security of software development and delivery compared to traditional processes. A nimbler
software development lifecycle results in a competitive advantage for businesses and their
customers.

• DevOps is a practice that emphasizes the collaboration and communication of software
developers and IT Operations. But it's more than that. It's a culture change. It's tearing down
silos and breaking down walls to bring groups of people together to form a team with a common
set of principles, methods, values, and tools.

• The process of application delivery and infrastructure management is automated. This is so that
building, testing, and releasing software, as well as the deployment, configuration, and
management of the infrastructure in which that software runs can happen rapidly, frequently,
and more reliably. The team is accomplishing basic tasks planning, coding, building, testing,
releasing, deploying, and configuring.

• But they do so in a continuous loop, a cycle of working class functionally. Together, many
different members from technical teams, business teams, the coding team, production and
deployment team, and the QA team all work through the entire process to understand and meet
the needs of the customer with seamless IT services.

• CALMS: Culture, Automation, Lean, Measurement, Sharing

 5

CI/CD Explained
DevOps and CI/CD tend to get used interchangeably:

• DevOps is a Culture – and it’s based on Continuous Integration and Continuous Delivery
practices.

• You need to build and adopt processes to hit the DevOps culture.

• It starts with Code – Source code control. That code needs to be built into deliveries and
artifacts that can be deployed. These deployments need to be tested and the more automated
testing you have, the better the quality of the testing. Lastly deploying the packaged code into
the UAT, Staging and production environments. Tying these together is the basics of the CI/CD
pipeline.

• With a CI/CD pipeline, developers can make changes to code that are then automatically tested
and pushed out for delivery and deployment.

CI/CD enables the delivery team to:

• Make changes on their local machines

• Commit their changes into a central repository

• Merge their changes with a pull request

The illustration above shows the basic CI/CD flow:

• Code = source code control. Source code control includes items such as configuration files and
settings. It includes the code tree and the various libraries that constitute the solution.

• Commits are means to manage changes that take solution from one configuration to the next.

• The CI Pipeline supports the continuous integration where various contributors use pull requests
(PRs) to submit their contributions to the integrated whole. The system automatically builds and
runs available automated tests. Reviewers check the work before accepting it. The resulting
artifacts are eventually deployed to SIT for automated testing.

Aras Innovator Configuring Solutions Student Guide

6

• The CD Pipeline supports the need to deploy the validated (SIT tested) artifacts for user
acceptance test and in some cases, it is used as a basis to verify the ability to migrate existing
customer data into a staging area. Issues may arise during UAT. After remediation of the issues,
the solution is eventually deployed into production.

Notes:

• CODE: Changes, including code, configuration, etc.

• Source code Control Tool: Git

• CI/CD Pipelines: For example, Jenkins, Azure pipeline, Bamboo, etc.

• CD: Continuous Delivery

• SIT: System Integration Testing

• UAT: User Acceptance Testing

 7

Aras DevOps High-Level View
Pre-configured Continuous Integration template

• Provides GIT for Source Control Management leveraging a Pull Request (PR) process

• Provides Azure Pipelines for executing automated tests, code scans, etc.

• Provides Artifactory for storing all build artifacts (baselines, packages, builds) to allow for reuse
in deploying to multiple environments

• Provides an SIT server to allow for end user/QA validation and review of work

• Provides TAF license so your teams can build robust automated tests

• Dedicated team to help ensure the pipeline is operational

Continuous Delivery

• Aras DevOps provides the full CI experience. Continuous Delivery is reviewed on a project-by-
project basis to meet customer needs

• Aras Enterprise offering provides the full CI/CD offering for managing deployments as well as
continuous integration.

• Full Continuous Delivery pipeline available instantly to support your DevOps Journey

• Continue to benefit as Aras evolves and introduces new enhancements into the Aras DevOps
offering

• No additional internal hardware/maintenance required for supporting the pipeline

• Uses the same tools and process leveraged by Aras Solution Delivery teams

• Can be leveraged by downstream teams (e.g., support and upgrades) to help improve overall
customer satisfaction

• Includes TAF license for helping build/extend your test automation

Aras Innovator Configuring Solutions Student Guide

8

Standard Development Environment (SDE)

• An environment with tools and processes that enables you to adopt industry-common CI/CD
practices.

• Standard Tools and Software – all tools and software (required and optional) and their
integrated configuration that we are using locally for our goals (Git, Visual Studio, MS SQL and so
on)

• Aras Tools – all proprietary software and solutions that we are using (Aras VS Plugin,
Import/Export, TAF, …)

• Services – hosted services and applications accessible via network/Internet (Azure DevOps –
base tool for the SDE CI/CD and other basic concepts)

• Industry Practices – how we are using everything listed above (Code Guidelines, Industry Best
Practices: CI/CD, DevOps)

• Aras Pipelines – formal definition of start to end and iterative processes with roles, activities and
other details that help to reach local and global goals

 9

Packaging in Aras Innovator
The Aras Innovator architecture is designed for customization of standard Aras Solutions/Apps and for
building your own custom Solutions.

Solution Packaging is the mechanism that allows “Solution Developers” to register customizations in
“Packages” so they can be extracted and transported to other Aras Innovator installations. For example,
from a developer environment to the production system.

In larger solution development engagements exported packages and their elements can be put under
version control and can be input to an automated build process (CI / CD).

The first step in moving a solution is to create a Package Definition.

Aras Innovator Configuring Solutions Student Guide

10

Understanding Packaging
Conceptually each package is a collection of item IDs. Additionally certain ItemTypes were introduced to
support package functionality.

A newly installed Aras Innovator database contains Package Definitions of two types:

• Aras Core Packages – These packages are used to define the basic structure of every Aras
Innovator database, regardless of what solutions are used in the database. They created and
managed by Aras for the Core system.
Do not modify, because any modifications (addition, change of value, deletion) put your Aras
Innovator installation functionality at risk.

• Aras Solution Packages – These packages define the elements that comprise the definition and
functional rules of different Solutions data models. They are created and managed by Aras for a
dedicated Solution. The names typically begin with com.aras.innovator.solution. Modify with
care!

Try It … Explore existing Package Definitions

1. Navigate to Administration > Configuration > PackageDefinitions.

2. Run a blank search.

3. Open some of the Package Definitions, and note their structure, for example
com.aras.innovator.core or com.aras.innovator.solution.PLM.

Notes:

• A package name must be unique within a database of an Aras installation, and it can be any text
up to 64 characters (excluding special characters. spaces are allowed)

• Package names should be globally unique, at least within your Aras ecosystem, and should
follow a naming convention. We recommend using a “.” notation for names. A good example for
this would be to follow the java package naming conventions.

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

 11

• Standard Aras packages from Applications and Core modules already follow a convention. The

name spaces defined in this convention are reserved for Aras internal packages and shall not be

applied outside of Aras!

Aras Innovator Configuring Solutions Student Guide

12

Solution Package Overview
The components of a Solution Package are outlined in this diagram. The number of Package Groups and
Package Elements are dependent on an Aras Innovator release and can grow with each new release.

Package Definition

A Package Definition is a collection of Package Groups that contain Package Elements. For simple
solutions you should be able to define a single package and add all relevant elements to it.

With larger solutions there can be cross dependencies between elements where one element of the
same group may need to be created before the other. Or your solution is modular and has optional
components. In this case your solution should be broken down into multiple packages.

Package Definitions (in short, Packages) are exported from an Aras system they are defined in using the
Packaging Utilities.

Package Groups

You do not need to create these. They are created automatically when adding an Element to a Package
Definition. Names of Package Groups are built-in in the Modeling Engine. (like: Method, ItemType, List,
RelationshipType etc.)

Package Elements

In the packaging process Package Elements are added to a Package Definition. As an Aras Administrator
you will have buttons or menu actions “Add to Package Definition” to add selected elements to a
package.

 13

Understanding Packaging and Instance Specific Changes
Aras Innovator is very flexible in enabling users to do rapid application development and proofing out
concepts.

This flexibility requires management to satisfy good practices developed in the industry to manage
configuration of enterprise systems. ITIL (Information Technology Infrastructure Library) has such
controls in the form of practices in the latest versions. SOC 2 (System and Organization Controls 2)
certification also requires strong configuration (change) management.

For such reasons, administrators must adopt the discipline of extracting such changes and managing
them in DevOps. If for no other reason than to ensure the next release does not wipe out their changes.

When changes are properly change-controlled then the corresponding solution configuration can be
reproduced with assurance.

The first step in this procedure is defining a package by a Package Definition item, which then can be
exported and re-imported to the central source control system for further usage in the builds.

When creating items, e.g., users, lists, test data, etc. in an Aras Innovator instance uniquely for using
them in this instance, then packaging is not required. However, when exporting them for use in CI/CD,
packaging is mandatory. This allows the build process to create an Innovator instance with information
from source code repositories.

In the example above A, and D represent new or modified items which are properly packaged, exported,
copied, and assigned to the change control system Git. B and C represent Innovator instance specific
items which are not intended for use in the next build and therefore consequently not packaged.

Please be aware that the visualization is reduced to changed items only.

Aras Innovator Configuring Solutions Student Guide

14

Guidelines for AML Packages
Please do not modify package structure created by Import/Export tools. It might cause compatibilities
issues for the new tools provided by Aras and issues for the support and future upgrades. Also, it will
cause baselines synchronization issues.

The rules are meant to support you in keeping the functionality of your current Aras Innovator instance
as well as reducing the risk of future collisions between changes you made, and changes made by Aras.
Ignoring the rules can lead to future issues with support, upgrade, and baseline synchronization.

The packaging guidelines include keeping items in their original packages. Therefore, in our example, we
will change the CAD form and the Document form within the Aras solution package
“com.aras.innovator.solution.PLM” package, which already exists in the baseline.

Do not move Elements between Packages
Once a package is released and got distributed, you should not move elements to other packages. If you
do so, it will require scripts to be written to clean up references to the Package Elements you moved in
Package Definitions in all environments the package is deployed in.

Definitions of dependencies between packages

• Often, the solutions you build reference elements from other solution packages. You can specify
these package references as part of the Package Definition. When the exported package is
imported into another system, the required dependencies are resolved before any new
elements are accepted into the system.

• If a required package is missing on the destination system, an error is raised, and the import
fails.

 15

• Every solution in Aras Innovator is dependent on the Core Package. The Core Package is installed
when you first install Aras Innovator. Because every solution relies on this package, the
dependency is implied and does not have to be defined in a Package Definition. In the example
above, the PLM Solution is dependent on Core, but that dependency is implied and does not
have to be configured in the PLM Solution Package Definition.

Aras Innovator Configuring Solutions Student Guide

16

Creating a Package Definition
You create a Package Definition to identify what elements will be exported from the database. You
select the elements that make up your solution and add them to a definition. Eventually, the definition
is used to export the selected Items from the database to the file system as AML documents.

After creating a package, you can add subsequent elements by selecting each Item and adding them to
the same Package Definition.

Try it … Create a Package Definition

1. Navigate to Administration > Configuration > PackageDefinitions and click the Create New
PackageDefinition button.

2. Enter com.aras.training.sde for the PackageDefinition Name and click Done.

 17

Exporting a Package
Once the Package Definition is complete, the package can be exported using the Export utility. This
utility is a separate executable named export.exe that is available on the Aras Innovator CD image, or
that may be downloaded from https://www.aras.com/en/support/downloads. It is important to select
the Export utility belonging to the version and service pack of the installation from which you do the
export.

The Export utility allows you to select a Package Definition from the database and create a package
folder structure in the file system. Each Package Group (ItemType, Form, etc.) becomes a separate
subfolder in the file. Within each subfolder, each exported Item is represented as an AML file with the
same name as the exported Item.

In the example above, two Form definitions are exported and contained in the Form subdirectory. Note
the remaining subfolder names – each represents a kind of exported Item from the database.

Try It … Open the Export Utility

1. Use Windows File Explorer and navigate to the place where the export.exe file has been stored.

For example: C:\Users\IEUser\Desktop\Apps\PackageImportExportUtilities\Export
(or as directed by instructor).

2. Double click the export.exe file to run the Export Utility.

3. In the Server field, enter the URL of the Aras Innovator Server.

For example: http://localhost/MSEDGEWIN10-ArasSDETraining-training.

4. Click the ellipsis (…) button to the right of the Database field to populate the dropdown list.

5. Select the desired database, i.e., MSEDGEWIN10-ArasSDETraining-training.

6. Enter a valid administrator username and password in the respective fields.

In Aras classroom setting, use the Username of admin with the Password of innovator.

7. Click the Login button.

https://www.aras.com/en/support/downloads

Aras Innovator Configuring Solutions Student Guide

18

Use Case #1: CAD Form and Document Form Changes
The objectives of the use case is to make changes to two items, already existing in the baseline, and to
integrate the changes to the future builds: the CAD Form and the Document Form are the two items
that we are modifying.

For one of the two items we go through all necessary steps, and we will have success; the other one is
just used to demonstrate a possible error when one skips the important steps of committing and staging
the changes to Git.

Since you have added the properties to existing items, there is no need to update the import manifest
file in this exercise; we will not even have more package files than before, just two modified files.

The subsequent import during the build works because it is an amendment to the package that already
exists in the baseline.

The exercise steps contain checks and verifications which help to understand the details of the process
as listed in the following table.

 19

Step CAD Form Document Form Result

Export before change  
C:\ArasProjects\project\
localExports\FormExport1\

Change Form in the Aras
Innovator instance

 
Forms in instance have one more field
each

Export after change  
C:\ArasProjects\project\
localExports\FormExport2\

View Differences  

Review the manifest file in the
local repo and in the export
results

  The manifest file is not changed

Copy export results to local repo  
Local repo contains the changes in the
files

Stage or commit the xml file in
the Form folder

 X
Only the modified file for the CAD form is
in git

Run ContinuousIntegration   No error

Confirm change in git   git contains the changes as unstaged files

Confirm change in the Innovator
instance

 
Forms in instance have still the new field
each

Run BuildAndDeploy   No error

Confirm the changes in the new
Innovator instance

 X
CAD: ok
Document: like before the change

Aras Innovator Configuring Solutions Student Guide

20

Exporting the CAD and Document Forms Before the Changes
Export the changes to your export folder for comparison later with your exported changes.

Try It … Export the CAD and Document Forms

1. Enter the server url.

2. Select the database (click on the three dotted = ellipsis button, then select from the drop-down).

3. Log in (fill in username admin and password, then click the Login button).

4. Set the destination of the export, you will find the exported files in that directory.

For example: C:\ArasProjects\project1\localExports\FormExport1.

5. Refresh packages (click on the three dotted = ellipsis button).

6. Locate the package group Form in the package definition com.aras.innovator.solution.PLM and
click on the text.

7. Select the forms CAD and Document.

8. Click the Export button.

Note: A “Create directory” dialog will pop up asking you if you want to create a new directory.
Click Yes to accept the offer to create the new directory.

9. Navigate to the newly created folder FormExport1, and review the CAD.xml and Document.xml
files; also review the newly created manifest file imports.mf.

10. Review the export log in folder ..\PackageImportExportUtilities\Export\log.

 21

Changing the CAD and Document Forms
The changes shown in this example are the addition of an unused property into the forms for both
ItemTypes.

Try It … Change the CAD Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the CAD Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select view_file.

5. Place the Field on the canvas, and click on Done to save the Form.

Try It … Change the Document Form

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the Document Form.

3. Switch to Edit mode.

4. Click on Unused Properties and select created_by_id.

5. Place the Field on the canvas, optionally change the Field Label to Created By, and click on Done
to save the Form.

Aras Innovator Configuring Solutions Student Guide

22

Exporting the CAD and Document Forms After the Changes
Export your changes to the new destination folder C:\ArasProjects\project1\localExports\FormExport2,
marking the two Form items CAD and Document.

Try It … Export the CAD and Document Forms After Changes

1. Open the Export utility in Administrator mode.

2. Populate the different fields as before and set the Export folder as
C:\ArasProjects\project1\localExports\FormExport2.

3. Review log, and verify the contents of the folder FormExport2.

 23

Locating the Differences (with KDiff3)
As a good exercise, analyze the differences between the export data before and after the changes. We
want to avoid situations where additional changes (currently not relevant) are present before we do a
commit.

Try It … Analyze Differences in the Result Files for the CAD Form

1. From the Taskbar or the Windows Start menu run KDiff3 to compare the two result files
containing the AML for importing the CAD Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\CAD.xml as the A
(Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\CAD.xml as the B
file.

4. Observe the differences: We find the definition of one additional field with the name property
view_file in the exported xml file after the change – that reflects exactly what we changed from
the UI.

Try It … Analyze Differences in the Result Files for the Document Form

1. From the Taskbar or the Windows Start menu run KDiff3 to compare the two result files
containing the AML for importing the Document Form.

2. Select C:\ArasProjects\project1\localExports\FormExport1\PLM\Import\Form\
Document.xml as the A (Base) file.

3. Select C:\ArasProjects\project1\localExports\FormExport2\PLM\Import\Form\
Document.xml as the B file.

4. Observe the differences: We find the definition of one additional field with the name property
created_by_id in the exported xml file after the change – that reflects exactly what we changed
from the UI.

Aras Innovator Configuring Solutions Student Guide

24

Reviewing the Manifest File
The manifest file is an important file that tells the CI/CD pipeline which packages need to be included
during the import phase.

Try It … Compare the Manifest Files in Export and AML-packages Folders:

1. Navigate to folder C:\ArasProjects\project1\localExports\FormExport1 and open imports.mf in
Notepad++.

2. Navigate to folder C:\ArasProjects\project1\localRepo\AML-packages and open imports.mf in a
new Notepad++ instance (used for future builds).

3. Both files will be identical in the PLM section.

Note: The export utility simplifies the name of the package during the creation of folder names. Notice
that the export utility only uses the last element of the package name PLM as folder name.

 25

Copying the Export Utility’s Output to the Local Repo
When you have the export results, you can copy the top common folder and paste it in the repo local
working directory and accept file replacement warnings. This approach allows you to avoid forgetting
files.

Try It … Copy the Export Utility’s Output to the Local Repo

1. Copy and paste the folder C:\ArasProjects\project1\localExports\FormExport2\PLM onto the
corresponding folder in the local repo under AML-packages.

2. In the Replace or Skip Files dialog select Replace the files in the destination to accept the
replacement.

Aras Innovator Configuring Solutions Student Guide

26

Staging the Modified File CAD.xml in Git Bash
To add the modified file CAD.xml we stage it by using git add …/CAD.xml.

We do not stage the modified file Document.xml to see the different behavior.

Try It … Stage the Modified File CAD.xml

1. Navigate to C:\ArasProjects\project1\localRepo\AML-packages\PLM, right-click to open the
context menu and select Git Bash Here.

2. Verify the current status of the git repository by running git status.
Result: you will see the two files CAD.xml and Document.xml as not staged files (there are other
files that are also not staged but they are irrelevant to use case).

3. Stage the file CAD.xml: git add Import/Form/CAD.xml.

4. Verify now the new status of the Git repository by running git status.
Result: you will see only the file Document.xml as not staged file; the file CAD.xml is displayed as
modified file.

5. Commit the CAD.xml file using the command git commit -m “Changed the CAD Form”.

Note: The instructor will also demonstrate the steps above using the Git Extensions GUI.

 27

Confirming Your Changes in Git Extensions
The Git Extensions GUI allows one to quickly review modifications in files.

Try It … Confirm Your Changes in Git

1. Navigate to C:\ArasProjects\project1\localRepo, right-click to open the context menu and select
GitExt Open repository.

2. Click OK in the Settings - Checklist window.

3. Navigate to the tip of the training branch (below Commit index).

4. Click on the Diff tab and select the file CAD.xml.

5. Notice that it displays an additional Item block with the name property view_file.

6. Navigate to the Working directory (non-staged and non-committed work).

7. Click on the Diff tab and select the file Document.xml.

8. Notice that it displays an additional Item block with the name property created_by_id.

Aras Innovator Configuring Solutions Student Guide

28

Reviewing the Continuous Integration Pipeline
CI Defined

An automated utility script is provided as part of each customer repository to perform final validation
and verification that a build is successful.

This script can be run locally by developers or system integrators manually to determine if the build
passes or fails. Automation tools are also available to provide scheduled executions of this script on a
dedicated CI server.

CI Steps

The CI script runs all the unit and integration tests that have been created for a project by installing and
building a new temporary instance of Aras Innovator, applying the project code and configuration, and
making sure all tests are successful.

A report indicates Success or Failure with an execution log that helps in resolving issues that may have
occurred. In the final steps the script deletes the running instance (and database).

 29

Running Continuous Integration
Run the ContinuousIntegration.ps1 file as administrator to ensure that your repository is still in a valid
state. You should receive a green success message. In the example above the run took around 20
minutes.

Try It … Run Continuous Integration

1. Right-click on the Start menu to open a new Windows PowerShell (Admin) window.

2. Access the local repository at C:\ArasProjects\project1\localRepo.

3. Enter .\ContinuousIntegration.ps1 to execute the CI script.

Aras Innovator Configuring Solutions Student Guide

30

Confirming Your Changes in Aras Innovator Before Rebuilding
Verify that the current instance is using the modified forms for CAD and Document items. In the next
steps we will delete the current installation and create a new one.

Try It … Confirm Your Changes in Aras Innovator Before Rebuilding

1. In the TOC go to Documents to create the new documents.

2. Go to Documents > CAD Documents to create a CAD Document: notice the new field named
View File.

3. Go to Documents > Documents to create a Document: notice the new field named Created By
(or created_by_id if you did not do the optional renaming).

 31

Rebuilding Aras Innovator
Rebuild Aras Innovator using the script BuildAndDeploy.ps1. You should receive a green success
message. In the example above the script execution took around 20 minutes.

In the output you find the URL of the new Aras Innovator instance.

Try It … Rebuild Aras Innovator

1. Right-click on the Start menu to open a new Windows PowerShell (Admin) window.

2. Access the local repository at C:\ArasProjects\project1\localRepo.

3. Enter .\BuildAndDeploy.ps1 to execute the Build script.

Aras Innovator Configuring Solutions Student Guide

32

Reviewing the Document and CAD Document Forms
The form for the CAD is like it was before the rebuild, meaning, it contains our intended change. On the
other hand, the form for the document fell back to the initial state without a field for the creator.

The example for the document form illustrates what happens if you have not staged or committed your
changes before the next rebuild.

If you have kept your exports in separate folders, you can recover them.

Running ContinuousIntegration.ps1 beforehand will not and cannot indicate the issue – it simply does
not know what you forgot in the staging.

Avoid this situation by staging or committing changes before building, i.e., before running
BuildAndDeploy.ps1.

Try It … Review the CAD and Document Forms

1. Login to Aras Innovator as user admin.

2. Select Administration > Forms and search for the CAD Document Form and Document Form.

3. Open the forms and notice any new changes.

 33

Use Case #2: New ItemType Project
To demonstrate how the development process works, a small project has been designed, and this will
allow users to collect information in a Design Request item.

The first sprint should create the following:

• ItemType: Design Request

• Properties:

• Request Number (Sequence)

• Title (String)

• Completion Date (Date)

• Patent (Boolean)

• Form (Display properties for data entry)

Requirement: The Design Request item should display the three properties on the form.

Aras Innovator Configuring Solutions Student Guide

34

Defining New Item Type, Sequence, Properties – Updating Form
The following are the objectives:

1. Create a new ItemType named trn_DesignRequest with the appropriate labels.

2. Create a new Sequence named trn_DesignRequestSequence that will be used in the steps below
to define the request number (DR-0010, DR-0020, etc.)

3. Create the following properties to collect data about the request:

Property Label Data Type Length Keyed Name Order

trn_title Title String 64

trn_completionDate Completion Date Date

trn_patent Patent? Boolean

trn_itemNumber Request Number Sequence 1

4. Add the properties to the Design Request Form.

5. Assign TOC Access and Can Add? to the World identity.

6. Assign Default Access as the default permission.

Try it … Create the Design Request ItemType

1. Navigate to Administration > ItemTypes and create a new ItemType.

2. Enter or select the following values on the ItemType Form:

Name trn_DesignRequest

Singular Label Design Request

Plural Label Design Requests

History Template Default

Default Structure View Tabs Off

 35

Small/Large Icons Choose from provided image list

3. Click the Save button to save your new Design Request ItemType.

Try it … Provide Access Permissions to the Design Request ItemType

1. Provide the following values by clicking on each Relationship tab and adding a new row
(the Add button):

Relationship Tab Name Value

Can Add World (Can Add is checked)

Permissions Default Access (check Is Default)

2. Save the record.

Try it … Create a Sequence

1. Navigate to Administration > Sequences and create a new Sequence.

2. Name the sequence trn_DesignRequestSequence.

3. Provide the following sequence values:

Prefix DR-

Initial Value 0

Current Value 0

Suffix

Pad With 0

Pad To 6

Step 10

4. Click the Done button to save the trn_DesignRequestSequence sequence.

5. Return to the trn_DesignRequest ItemType tab and ensure you are in Edit mode.

6. On the Properties tab, click the New Property button.

7. Add a new property named trn_itemNumber, with a Label of Request Number, and with Data
Type Sequence that uses the trn_DesignRequestSequence as the Data Source.

Name Label Data Type Data Source […] KNO

trn_itemNumber Request Number Sequence trn_DesignRequestSequence 1

8. Add a Keyed Name Order (KNO) value of 1 for the trn_itemNumber property.

9. Click the Save button to save the new property.

10. Remain in Edit mode for the next exercise.

Try it … Create Custom Properties for the Design Request

1. Open the Design Request ItemType for editing.

2. Select the Relationship tab labeled Properties and click the New Property button to add a new
property.

3. Use the table below to provide the Name, Label, Data Type, and additional settings for each
new property for the Design Request ItemType.

Aras Innovator Configuring Solutions Student Guide

36

Property Name Label Data Type Length KNO

trn_title Title String 64

trn_completionDate Completion Date Date

trn_patent Patent? Boolean

4. Click Done on the Design Request ItemType.

Try it … Regenerate the Design Request Form

1. Navigate to Administration > ItemTypes and open the Design Request ItemType for viewing.

2. On the Views relationship tab, right-click the Design Request (Default) Form and select Actions
>RebuildViewAction from the context menu.

This will add all custom Design Request properties to the Form.

3. Right-click the Design Request (Default) Form again and select Open to open the Form Editor.

Notice that all custom properties have been added to the Form as Fields, i.e., the Form has been
regenerated. You can reposition each Field by dragging them and set Field characteristics using
the Field tabs.

Try it … Add Design Request ItemType Button to TOC

We need to add the new Design Request ItemType to the TOC Editor to enable users to access the new
Design Request Item from the TOC, and in the Main Search Grid.

The Add ItemType button adds a new ItemType button to the TOC. If a Category is selected when this
button is clicked, the new ItemType button is created as a child of the selected Category. If no Category
is selected, the new ItemType button is created at the bottom of the TOC.

1. Navigate to Administration > Configuration > TOC Editor and select the Design category.

2. In the toolbar click the Add ItemType button.

3. Search for and select the Design Request ItemType and click OK.

4. Accept the default Label value and for the Access field, enter World or search for and select
World.

5. Click Save. , and verify that the Design Request Item shows up under the Design category in the
TOC.

 37

Adding Items to the Export Package
Add project elements to package com.aras.training.sde.

• Form

• ItemType

• Sequence

Try It Add Items to Export Package

1. Navigate to Administration > ItemTypes and search for trn_DesignRequest.

2. In the Main Search grid, right-click on trn_DesignRequest, and select Admin > Add to Package
Definition from the context menu.

3. Search for and select com.aras.training.sde.

4. Repeat the steps for the other project elements.

5. Open the com.aras.training.sde package definition and verify its contents.

Aras Innovator Configuring Solutions Student Guide

38

Exporting the Form, ItemType and Sequence
The Package Definition now needs to be exported. It is recommended that you export the package to a
temporary location (e.g., localExport directory) and review the imports.mf manifest file to ensure the
appropriate dependencies have been defined. The local export files in the staging area must then be
copied/merged into the AML_packages folder in the training branch of the repository.

Try It … Export the Package Elements

1. Start the Aras Export tool and login to the instance of Aras Innovator with the admin credentials.

2. Set the Export folder to a staging folder on the developer machine.
For example: C:\ArasProjects\project1\localExports\Step1.

3. Select the Package elements and export to the local folder.

4. Examine the contents of the Step1 folder to ensure the appropriate AML files have been
created.

5. Make note of the imports.mf manifest file that has also been created by the Export utility.

Notes:

Remember that the imports.mf manifest file is updated each time an export is executed in the local
export directory. You should check this file to make sure the appropriate dependencies have been
configured if necessary.

Because there is only one imports.mf file for the project in the AML-packages repository be careful not
to copy over changes from a previous configuration.

 39

Placing Content Into a Repository
It is often necessary, as in this case, to export to a local folder then copy what is necessary into the local
repo.

Try It … Copy the Export Utility’s Output to the Local Repo

1. Copy and paste the folder C:\ArasProjects\project1\localExports\Step1\sde into
C:\ArasProjects\Project1\localRepo\AML_packages

2. Accept prompts for replacement if encountered.

3. Ensure that the imports.mf file includes the following line:

<package name="com.aras.training.sde" path="sde\import" />

Aras Innovator Configuring Solutions Student Guide

40

Updating the Imports Manifest File
The previous example was demonstrating the quite simple case of modification of items which already
exist in the baseline.

For setting up a module of your own you would normally create your own package by first creating your
own package definition with its dependencies and then export the package.
In that case the manifest file for the import must be adapted and needs to be staged and committed in
Git.

If you forget to update the manifest file that has the effect of ignoring your changes in the re-import and
therefore it will not be considered for the following builds. ContinuousIntegration.ps1 cannot help here
as there are no syntactic errors to show.

Try It … Update the Imports Manifest File

1. Open the manifest file that was created by the Export utility in Notepad++. You will find inside
the line <package name="com.aras.training.sde" path="sde\Import" />.

2. Open the manifest file in the folder C:\ArasProjects\project1\localRepo\AML-packages, in a
different Notepad++ instance.

3. Copy the line from step 1 into the file from step 2.

4. Save and close the imports.mf file from the AML-packages folder.

 41

Reviewing ItemType AML Definition
Check and comment out the <ITPresentationConfiguration> node from your ItemType definition. It is a
known issue: if left here then we will fail later when we carry out the building of the new Innovator
instance.

Try It … Review the ItemType AML Definition

1. Go to C:\ArasProjects\Project1\localRepo\AML_packages\sde\ItemType.

2. Open the trn_DesignRequest.xml file in Notepad++.

3. Comment out the node <ITPresentationConfiguration> if encountered.

Aras Innovator Configuring Solutions Student Guide

42

Staging and Committing Your Changes
It is preferable to do atomic commits to better control your work; for this reason, it is advised to include
code (such as validation methods) in other commits.

Try It … Stage and Commit Your Changes

1. Navigate to C:\ArasProjects\project1\localRepo and open Git Extensions.

2. Click on Commit in the middle of the main toolbar.

3. In the Working directory changes pane, you will notice the four files we are interested in
staging and committing.

4. Select the four different files, i.e., imports.mf, trn_DesignRequest.xml (2) and
trn_DesignRequestSequence, and transfer them to the Stage area.

5. Enter a commit message, for instance “Added new Design Request ItemType”, and click on
Commit.

6. Verify now the new status of the Git repository by running git status from a Git Bash window.

 43

Validating Build
To ensure that the new build is fine, execute ContinuousIntegration.ps1 again.

Try It … Run Continuous Integration to Validate New Build

1. Right-click on the Start menu to open a new Windows PowerShell (Admin) window.

2. Access the local repository at C:\ArasProjects\project1\localRepo.

3. Run ContinuousIntegration.ps1 as administrator.

Aras Innovator Configuring Solutions Student Guide

44

Rebuilding Aras Innovator to Confirm New Configuration
Once you added and committed the project files in the AML Package directory, you can rebuild the
environment at any time using the BuildAndDeploy.ps1 file. Aras Innovator and the original (baseline)
database will be reinstalled, and any AML Packages will be applied after installation.

Make sure that the export files have been successfully created and are stored in the AML Packages
folder in the development repository.

Try It … Rebuild the Environment

1. Access the repository directory and make sure the current sprint branch (training) has been
checked out.

2. Use Windows PowerShell (as administrator) to run the BuildAndDeploy.ps1 script.

3. If the build is successful, a green prompt will appear. If the build fails, examine the log entries to
determine the problem (e.g., missing AML files?).

Note: To avoid the issue of losing changes you have not previously exported. Run
ContinuousIntegration.ps1 first.

 45

Summary
In this short introduction to Aras DevOps, you learned the basic guidelines for packaging items for Aras
Innovator and how to use the packages within the Aras DevOps Framework SDE.

You also built a simple project based on a use case, and then exported the project into the customer
repository after validating it locally through the Continuous Integration pipeline.

You should now be able to:

• Understand Aras DevOps (AD)

• Understand packaging in Aras Innovator

• Differentiate between packaged changes and instance specific changes

• Understand packaging in Aras DevOps

• Export changes for Aras DevOps CI/CD (Continuous Integration/Continuous Delivery) control

• Understand the impact of changes in working directory vs staged or committed changes

• Build a sample project

• Package and export sample project

• Validate and commit sample project into local repository

• Rebuild local innovator instance with BuildAndDeploy pipeline

