

Welcome to the MAC Policies training session –

• We’ll begin with a review of basic Innovator Access Control concepts, followed by the
role MAC plays in the overall scheme of Access Control.

• After the introduction, we will define a MAC Policy and Activate it to test it.

• We will then proceed to review and implement the latest and most powerful capability
of MAC known as Multi-valued Derived Attributes.

Access Rights

By now you’re familiar with Itemtype Permissions, which are based on Access Rights granted to
Identities: Get, Update, Delete, Discover, Show Warnings, Change Access

• They are required on every Itemtype

• Changes in Lifecycle State often used to
change Permissions automatically (for
instance when Releasing a Part or
Document)

• Essentially, Permissions assign Access
Rights to Identities and Roles

The key point here is that Access Rights are Integral to all Access Control schemes:

✓ Permissions
✓ Teams
✓ Domain Access Control (DAC)
✓ Mandatory Access Control (MAC)

Teams allow for a ‘late binding’ approach to the Identity (left column) in an Access Right’s row.
The Identity is abstracted as a Role, replacing the Identity in a Permission. The Role is resolved
to a specific Identity in a Team Item instance attached to the Item.

Domain Access Control grants access using rules applied to an item occurring within a
relationship structure or “Domain”. Moving items in or out of a DAC domain may change its
access. Access is granted in an additive manner to RBAC permissions – it can elevate but not
restrict access. DAC also supports Teams and supports Lifecycle-driven permissions.

While RBAC (Permissions and Teams) and DAC can grant access, MAC can only revoke access.
Therefore, if there was no access to an Item to begin with then passing the MAC test will not
matter – it will remain inaccessible. Conversely, if access granted to an item was granted by
any preceding means, failing the MAC test will revoke access.

The Anatomy of a MAC Policy:

MAC Attributes

• The Values derived from Items, Users, Environment Variables, and a special construct
‘Derived Attributes’ (covered later).

• Used as Operands in MAC Boolean Expressions

Boolean Expressions

• TRUE/FALSE expressions involving Attributes compared against each other

• Comparison Operators provided (see above)

Condition

• Group of one or more Boolean Expressions combined using logical AND, OR, NOT into
one ‘Condition’ that can be applied to an Access Right

Access Rights

• Get, Update, Discover, Delete, Show Permissions Warning; Common to all Innovator
Access Control schemes (RBAC, DAC, MAC)

Rule

• Condition + Access Right = Rule

o A collection of expressions defines a Condition; when applied to Access Rights it
defines a Rule. A Policy is the set of rules against all affected Itemtypes.

Attributes

MAC overrides any existing item access (RBAC/DAC) by applying Conditions against Access

Rights. Conditions are boolean expressions that can be very simple, or as complex as you may

need. These boolean expressions evaluate Attributes which are the values used in MAC

expressions. Attributes can be derived in many useful ways – which is a key feature of MAC.

Boolean expressions can reference CurrentItem, CurrentUser Attributes which may be:

• Property-based attribute obtained from the Item being accessed –

CurrentItem.<Property_name>

• Property-based attribute from the User making access request –

CurrentUser.<Property_name>

• Environment Attribute – dynamically generated on invocation via Method execution

• Derived Multivalued Attribute – created using the Derived Attribute Definition item

• xClass or xProperty reference used as an attribute

• Attributes can also be constants (hard-coded values).

Simple Attributes in Conditional Expressions

Perhaps the simplest form is a condition on the current Item (type
Part) based on one of its existing Attributes, Class Structure:

CurrentItem.Classification=”Software”

Such an expression could be applied to an Access Right, for instance
“Get”.

Try It:

Use an existing MAC Policy.

1) Navigate to Administration/Access Control/MAC Policies

2) Open MAC Policy ‘MP001’

3) Use the Sidebar menu to open the Rules Editor window,

examine the rule

4) Navigate to Design/Parts and [Search] for all Parts

5) Activate the MAC Policy from the […] More toolbar menu

6) Search for all Parts again

7) Add ‘Administrator’ to the Exempt Identities tab on the MAC Policy

a. First Deactivate the MAC Policy

b. Generate a New Version, then Edit

c. On the ‘Exempt Identities’ tab, add Administrators group

d. Save the MAC Policy

8) Search all Parts again

9) Deactivate ‘MP001’

Item Properties vs. User Properties as MAC Attributes

A more practical use case is that in which the attributes of the current

User are compared against the attributes of the item the User is trying

to access.

The User Itemtype and the Part Itemtype have both been assigned a

new List Property ‘Security Level’ that has the following levels as

Label/Values:

Try It:

1) Navigate to Administration/Access Control/MAC Policies

2) Open MAC Policy ‘MP002’

3) Use the Sidebar menu to open the Rules Editor window

4) Navigate to Design/Parts and [Search] for all Parts

5) Activate ‘MP002’ from the […] More toolbar menu

6) Search for all Parts again

7) Activate ‘MP001’ as well

8) Search all Parts again

9) Deactivate both from the main search grid using the RMB ‘More’ menu

Access if User Level Higher than Item Level Only

In the following use case, the Item can only be accessed (Get, Discover) if the

Security Level of the Item is less than or equal to that of the User. We simply

need to change the operator from ‘=’ to ‘<=’.

Try It:

1) Navigate to Administration/Access Control/MAC Policies

2) Open MAC Policy ‘MP002’

3) Deactivate if Active / Create a new Version

4) Edit the MAC Policy and use the Sidebar menu to open the Rules Editor window

5) Change the operator from ‘=’ to ‘<=’ as shown

6) Save and Activate

7) Edit Part Security Levels to various combinations with User Security Levels to test

You can use the following search criteria to isolate results. Modify the Admin

User’s security level, modify some Part security levels in various combinations to

test.

Helper Method “IsMemberOf()” Example

An option to Attributes derived from Properties would be to check User membership in special
group Identities. This would eliminate the need to implement Property schemes on User Items,
which requires Root login, and can become complex over time. Such a Boolean Expression
might look something like this:

“IsMemberOf()” is a Helper Method provided by MAC, another one of the many ways MAC can

derive Attributes for use in expressions.

This MAC Expression would solve to TRUE for any Item that has no Security Level set. But if it

did have Security Level set, then the User must be a member of ‘Authorized Group’ to solve to

TRUE.

The Expression would be applied to Access Rights to enforce the Rule against the specified

Itemtype, in this case Parts.

(CurrentItem.[Security Level] IS NULL)
 OR
((CurrentItem.[Security Level] >= 1) AND CurrentUser.IsMemberOf('Authorized Group'))

Try It:

1) Open MAC Policy MP003

2) Activate it

3) List Parts with ‘Confidential’ Security Level

4) Add admin to Identity Group ‘Authorized Group’

5) Log out, Log back in to reset group membership cache

6) List Parts again

Enabling Itemtype Properties for Use as MAC Attributes

Itemtype Properties to be used as MAC Attributes must be added to the Properties tab of a
special MAC Itemtype called mp_PolicyAccessItem. This was done for ‘Security Level’ in
preparation for these exercises.

For example:

Once added, a Property can be referenced as an Attribute in any MAC Policy Expression.
Properties added to mp_PolicyAccessItem must exactly match the properties of the ItemTypes
that the MAC Policies are being applied to. All ItemTypes that the MAC Policy is being applied
to must have the property being referenced, otherwise validation will fail when the Admin
attempts to save the Policy. The following data types are supported:

String Integer Float Decimal Boolean Date Item List

Try It:

1) Note that the ‘Security Level’ Property was added in preparation for this class.

2) Edit the Document Itemtype to add a Property ‘Security Level’

a. Type List

b. Source ‘Security Level List’

3) Update the Document Form to allow selection of a Security Level

4) Click Done

Implementing New MAC Policies

Aras Innovator MAC Policies are used to control user access to Items through a set of
MAC Policy Rules. MAC Policy Rules control access rights for Get, Update, Delete, Can
Discover, and Show Permission Warning to the set of ItemTypes which the MAC Policy
is applied to.

Creating a New MAC Policy

You can find MAC Policies in Aras Innovator by clicking Administration →Access
Control→MAC Policies in the TOC. The following menu appears:

Figure 1.

Only users with Administrative permissions have the ability to create MAC Policies.
Once you create a MAC Policy, you must specify the Name and save it. Once you do
that, you can create MAC Policy rules. Use the following procedure:

Try It:

1) Navigate to Administration/Access Control/MAC Policies

2) Click Create New MAC Policy. The following screen appears

 (next page)

3) Enter the Policy Name ‘ 004’ in the Name field and add the Document
 ‘ ’

4) click Save.

5) The MAC Expression Editor appears in the Sidebar menu (below):

We have used the editor to modify condition expressions in previous exercises. We will
now create new ones. The following syntax rules apply to Condition expressions:

• Values are case sensitive.

• String literals text must be enclosed between quotation marks ('text'), quotation
escapes with back slash (\').

• A Constant can act as an operand when you use it in a comparison. Otherwise a
Constant is a string type.

• Operators and precedence are the same as those used in SQL languages.

• Operators are not case sensitive.

• Arithmetic operators are not supported.

• Parentheses can be used to override operator precedence.

• Comparing two strings follows Transact-SQL rules.

Supported Comparison Operators for MAC Expressions

Operation Name Usage Meaning

= Equals valueRef1 = valueRef2 TRUE if left value is equal to right value.

>
Greater
Than

valueRef1 > valueRef2
TRUE if left value is greater than right
value.

< Less Than valueRef1 < valueRef2 TRUE if left value is less than right value.

>=
Greater
Than or
Equal To

valueRef1 >= valueRef2
TRUE if left value is greater than or
equal to right value.

Logical Operators
(AND, OR, NOT)

Operation Name Usage Meaning

<=
Less Than
or Equal
To

valueRef1 <= valueRef2
TRUE if left value is less than or equal to
right value.

!=
Not Equal
To

valueRef1 != valueRef2
TRUE if left value is not equal to right
value.

LIKE Like
valueRef1 LIKE
valueRef2

True is left value matches the right value
(pattern). The syntax for the “LIKE”
operator is exactly the same as in
Transact-SQL.

Note: If the Policy Rule uses a Property on the User ItemType and a user is able to edit

their own User Item, then the user is capable of changing their level of access to

any of the ItemTypes that a MAC Policy is applied to. This can also apply if the

Edit control is not restricted in a MAC Policy and other Permissions are based on

editable Properties.

! It is best to avoid using Properties on the User Itemtype where it is possible and

suitable to use group membership or derived attributes instead (covered later).

This policy is responsible for restricting access to User, Identity, and Alias items based

on defined User Visibility Rules items and should NOT be modified. The User Visibility

Policy MAC Policy and User Identities Derived Relationship Family must both be in the

Active state in order for User Visibility Rules to be enforced.

Try It (continued)

5) Add the following expression:

(CurrentItem.[Security Level] IS NULL)
 OR
((CurrentItem.[Security Level] >= 1) AND CurrentUser.IsMemberOf('Authorized Group'))

6) Name the expression – ’
form . . “ ”

7) Use the green checkmark to save it, which puts the condition into the top bar of
the editor

Note that Condition editing is done in the lower pane, and the upper frame displays
saved Conditions previously created within this MAC Policy Item. There can be multiple
condition expressions in a policy.

Available Helper Methods

The following table lists available methods that you can use within the Condition statement of a
Policy Rule:

Method Response

CurrentUser.IsMemberOf(<Identity Name>) Returns true if the current user is a member of a
(non-system) Identity <Identity Name>, otherwise
it returns false.

CurrentUser.IsMemberOf(Property<Item>) Returns true if the current user is a member of
the Item Property of type Identity. For example:
CurrentUser.IsMemberOf(CurrentItem.identity_id)

String.Contains(<StringToSearch>,
<SearchForString>)

Returns true if <SearchForString> is a substring of
<StringToSearch>, otherwise it returns false.

CurrentItem.HasUserVisibilityPolicyAccess() Returns true if the current user has access to the
current item based on the active User Visibility
Rules. This function can only be applied to User,
Alias, Identity Item Types.

Applying Policy Rules to Access Rights

Once you create Conditions, you may assign them to specific Access Rights. There are
selection fields for each.

Select a Condition from the dropdown list to apply that Condition to the Access Right.
The user is denied that Access Right if the selected conditions are not met (resolves to
FALSE).

Note: If a Rule is not selected for an access right, then the MAC Policy will not apply

any restrictions to that access right.

Standard Aras Innovator role-based permissions and all applicable MAC Policy

rules must grant access to an Item before a user is able to access it.

Applying MAC Policies

Once you establish the Policy Rules, you must assign the MAC Policy to the desired
ItemTypes and then activate the MAC policy. Assigning the MAC policy to ItemTypes is
done by adding them to the Applied To Relationship.

 ‘ ’ .
Activating a MAC Policy, all users except for the admin activating the MAC Policy
should be logged off and prevented from accessing the system until the MAC Policy is
activated.

Try It:

1) Add the condition to Discover and Get Access Rights at a minimum

2) Save the MAC Policy Activate it

3) Test on Documents

a. Set Security Level on some

Question: Why isn’t it necessary to add the condition to Update or Delete?

Updating MAC Policies

 . ‘ ’
 ‘ ’ . ‘ ’
Rules are not applied to control access.

In order to modify a previously active MAC Policy, the Policy must be versioned through
 ‘ V ’ .
‘ ’ .

Exempt Identities

Each MAC Policy includes a list “ .”
 “ ”
are not applicable to the request. (We used this is an earlier exercise)

Using xClasses and xProperties in MAC Policy Conditions

You can use xProperties that are associated with the mp_PolicyAccessItem ItemType
as item attributes in MAC Policy conditions. You should specify supported xProperties in
the Allowed xProperties relationship tab in the mp_PolicyAccessItem.

You can also use xProperties that are associated with the User ItemType as user
attributes. Using xProperties in MAC Policy conditions may cause some performance
penalties but it has the advantage of being able to specify access control for an item
xProperty independently from access control for the item itself (and therefore all the
item regular properties).

Warning DO NOT edit xProperty definitions that are being used in active MAC policies.

Doing so results in a system failure.

In MAC Policy conditions you can also check if an item or a user is classified by an
xClass using the built-in functions described below.

Using Methods to Verify Item Classification

The following table lists methods that enable you to check in MAC policy conditions to
see if an item or user is classified using a particular xClass or xProperty:

Method Response

CurrentItem.IsXPropertyDefined(<xPropertyName>) Returns true only when the
<xPropertyName> is defined
on CurrentItem.

CurrentItem.IsClassifiedByXClass(<xClassName>) Returns true only when the
CurrentItem is classified by
<xClassName>.

CurrentUser.IsXPropertyDefined(<xPropertyName>) Returns true only when
<xPropertyName> is defined
on Current.User.

CurrentUser.IsClassifiedByXClass(<xClassName>) Returns true only when
CurrentUser is classified by
<xClassName>.

For more information about xClasses and xProperties, refer to the Extended
Classification guide, and the MAC Policies released documentation.

Defining Environment Attributes

Environment attributes grant a user certain access rights to an Item based on specific
circumstances such as the geographical location or the time an access request is made.
For example, if the user makes the request outside of work hours, the request is denied.
If the same user makes the same request during work hours, their request is accepted.

You can find and create Environment Attributes in Aras Innovator by clicking
Administration →Access Control→ Environment Attributes in the TOC. The
following menu appears:

1. Click Create New Environment Attribute. A blank Environment Attribute
window appears:

2. Enter the appropriate information in the Name, Description, Type and Get Value
Method fields.

3. Click to save and unclaim the attribute.

 “G
V ” used to get the attribute value to use in an expression.

An environment security attribute with the name <attr_name> is referenced in a
Condition expression as ‘$< _ >’. The supported data types for Environment
Attributes are Boolean, String, and Integer.

Here is an example of a method that can be specified in the Get Value Method field (cut
and paste into method):

//MethodTemplateName=CSharp:Aras.Server.Core.AccessControl.Environment

AttributeMethod;

var startWorkTime = new TimeSpan(8, 0, 0);

var endWorkTime = new TimeSpan(20, 0, 0);

var currentDateTime = DateTime.Now;

var isWorkDay = DayOfWeek.Monday <= currentDateTime.DayOfWeek &&

currentDateTime.DayOfWeek <= DayOfWeek.Friday;

var isWorkTime = startWorkTime <= currentDateTime.TimeOfDay &&

currentDateTime.TimeOfDay <= endWorkTime;

var isWorkHours = isWorkDay && isWorkTime;

attribute.SetValue(isWorkHours);

 . V elated or e erencin te s

 . collections

V

V

Derived (Multi-Valued) Attributes

These special attributes are configured
independently (like Environment Attributes) and
become available in the Condition Editor when
successfully configured. Derived Attribute Definitions
reside under Administration/Access Control in the
table of contents.

Derived Attributes use an embedded Query
Definition to specify the Path from the Root
(CurrentItem) to a related Leaf Item and a Target
Property from which the Derived Attribute values are
extracted.

 ro ra s rrent User

 rrentUser ro ra erc re le els

 uery
Definition

User

 0

 rrentUser ro ra ec re le els

Program
 _

Program
 _

Program
 _

Configuring a Derived Attribute

A Derived Attribute has the following structure:

1 Name – the Symbol by which this derived attribute is referenced in expressions (Required).
Enclose spaces in [square brackets] when used in an expression.

2 Datatype of values contained in a derived attribute collection (Required). Must match Target
Property type, and vice-versa.

3 Text Description of Attribute for reference.

4 Attribute Queries - related items that define how to query the values for this ‘ ’ attribute

First-time
Entry Only

“ ”
Itemtype

 “ ”
expressions; also the Root Item of the Path defined by the
Embedded Query Definition. This field is a Required initial entry,
and becomes read-only once the Path is defined.

Read Only Leaf Item The Item at the endpoint of the Query Path. Target Properties are
derived from this item. There can only be one Leaf Item in the
query path.

(Query
Definition)

Internally stored query definition describing (a) the
Path from Root item to Leaf item and (b) Target
Property on the Leaf item from which values will be
derived.

Read Only Target Property Name of the Property on the Leaf Item used to derive Attribute
values. Type must match Datatype [2].

The Query Definition is accessed by double-clicking the Leaf Item column* of the
Attribute Query. The Root item is pre- “ ” .
the standard QD user interface, define the Path from Root to Leaf Item, and also select
the Target Property. On completion, the Read- “ ” “
 ” .

Using a derived attribute in a Boolean expression

Derived Multivalued Attributes are Collections, and the following operators support their
use in Condition logic (Boolean expressions):

Collection Operators:

Operator Description

Collection.IsEmpty(<multival
attribute>)

TRUE if Collection is empty

Collection.Contains(<multival
attribute>, value)

TRUE if Collection <multival attribute> contains
the value <value> (type

Collection.Overlaps(<multival
attribute1>, <multival
attribute2>)

TRUE if Collection <multival attribute1> has
values in common with <multival attribute2>

Recall that Derived Attributes are MAC Attributes that may be used in Boolean expressions.
Because their type is Collection, the Operators are collection operators shown above.

Try Its: (Work along with the instructor through this section)

1) Create a ‘container’ item to easily apply MAC policies to Parts, Documents,

etc.

Next…

we’ll create a Derived Attribute Definition that will allow Query results to be used in MAC Rules.

(Follow along with Instructor)

And apply it in a MAC Policy against GET and Discover:

(actual text)

Collection.IsEmpty(CurrentItem.ContainerSecurity)

OR Collection.Overlaps(CurrentItem.ContainerSecurity, CurrentUser.ContainerSecurity)

Finally, we will test various combinations of User / Part / Document Security Containment
scenarios.

Add Parts, Documents to various containers to see effects. Add Users to various
containers to allow access.

Questions?

	Access Rights
	The Anatomy of a MAC Policy:
	MAC Attributes
	Boolean Expressions
	Condition
	Access Rights

	Implementing New MAC Policies
	Creating a New MAC Policy
	Supported Comparison Operators for MAC Expressions

	Applying Policy Rules to Access Rights
	Applying MAC Policies
	Updating MAC Policies

	Exempt Identities
	Using xClasses and xProperties in MAC Policy Conditions
	Using Methods to Verify Item Classification

	Derived (Multi-Valued) Attributes
	Configuring a Derived Attribute
	Using a derived attribute in a Boolean expression

